Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G

1.1 K

Với giải Bài 4 trang 112 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Bài 4 trang 112 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G sao cho EB > AE, AF > FC, BG > GD. Tìm giao tuyến của các cặp mặt phẳng (EFG) và (ACD), (EFG) và (BCD), (EFG) và (ABD).

Lời giải:

Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G

⦁ Ta có EF ⊂ (ABC) và EF ⊂ (EFG) nên (EFG) ∩ (ABC) = EF.

⦁ Trong mặt phẳng (ABC), gọi I là giao điểm của EF và BC.

Trong mặt phẳng (BCD), gọi H là giao điểm của IG và CD.

Ta có H ∈ IG, mà IG ⊂ (EFG) nên H ∈ (EFG)

Lại có F ∈ (EFG) nên FH ⊂ (EFG) (1)

Ta cũng có F ∈ AC, mà AC ⊂ (ACD)

H ∈ CD, mà CD ⊂ (ACD)

Do đó FH ⊂ (ACD) (2)

Từ (1) và (2) suy ra (EFG) ∩ (ACD) = FH.

⦁ Tương tự, ta cũng có:

HG ⊂ (EFG) và HG ⊂ (BCD) nên (EFG) ∩ (BCD) = HG;

GE ⊂ (EFG) và GE ⊂ (ABD) nên (EFG) ∩ (ABD) = GE.

Vậy (EFG) ∩ (ACD) = FH, (EFG) ∩ (BCD) = HG, (EFG) ∩ (ABD) = GE.

Phương pháp giải

Muốn tìm giao tuyến của hai mặt phẳng: ta tìm hai điểm chung thuộc cả hai mặt phẳng. Nối hai điểm chung đó được giao tuyến cần tìm.

Về dạng này điểm chung thứ nhất thường dễ tìm. Điểm chung còn lại các bạn phải tìm hai đường thẳng lần lượt thuộc hai mặt phẳng, đồng thời chúng lại thuộc mặt phẳng thứ ba và chúng không song song. Giao điểm của hai đường thẳng đó là điểm chung thứ hai.

Chú ý: Giao tuyến là đường thẳng chung của hai mặt phẳng, có nghĩa là giao tuyến là đường thẳng vừa thuộc mặt phẳng này vừa thuộc mặt phẳng kia.

Đánh giá

0

0 đánh giá