Cho hình chóp S.ABCD. Gọi D, E, F lần lượt là ba điểm trên ba cạnh SA, SB, SC

330

Với giải Bài 2 trang 112 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Bài 2 trang 112 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD. Gọi D, E, F lần lượt là ba điểm trên ba cạnh SA, SB, SC sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K. Chứng minh ba điểm I, J, K thẳng hàng.

Lời giải:

Cho hình chóp S.ABCD. Gọi D, E, F lần lượt là ba điểm trên ba cạnh SA, SB, SC

Ta có: I là giao điểm của DE và AB.

Suy ra:

⦁ I ∈ DE, mà DE ⊂ (DEF) nên I ∈ (DEF);

⦁ I ∈ AB, mà AB ⊂ (ABC) nên I ∈ (ABC).

Do đó I ∈ (DEF) ∩ (ABC).

Tương tự, ta có J, K cũng thuộc giao tuyến của hai mặt phẳng (DEF), (ABC).

Vậy I, J, K thẳng hàng.

Đánh giá

0

0 đánh giá