Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt là hai điểm trên

1.5 K

Với giải Bài 1 trang 112 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Bài 1 trang 112 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt là hai điểm trên hai cạnh SB, SD.

a) Tìm giao điểm của EF với (SAC).

b) Tìm giao điểm của BC với (AEF).

Lời giải:

Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt

a) ⦁ Trong mặt phẳng (ABCD), gọi O = AC ∩ BD.

Ta có O ∈ AC, AC ⊂ (SAC) nên O ∈ (SAC)

O ∈ BD, BD ⊂ (SBD) nên O ∈ (SBD)

Do đó O ∈ (SAC) ∩ (SBD)

⦁ Lại có S ∈ (SAC) và S ∈ (SBD) nên S ∈ (SAC) ∩ (SBD)

Suy ra (SAC) ∩ (SBD) = SO.

Trong mặt phẳng (SBD), gọi I = EF ∩ SO.

Ta có I ∈ SO, SO ⊂ (SAC) nên I ∈ (SAC)

Vậy EF ∩ (SAC) = I.

b) ⦁ Trong mặt phẳng (SBD), gọi K = EF ∩ BD.

Ta có K ∈ EF, EF ⊂ (AEF) nên K ∈ (AEF);

K ∈ BD, BD ⊂ (ABCD) nên K ∈ (ABCD)

Do đó K ∈ (ABCD) ∩ (AEF).

Lại có A ∈ (ABCD) và A ∈ (AEF) nên A = (ABCD) ∩ (AEF).

Suy ra (ABCD) ∩ (AEF) = AK.

⦁ Trong mặt phẳng (ABCD), gọi H = BC ∩ AK.

Ta có H ∈ AK, AK ⊂ (AEF) nên H ∈ (AEF).

Vậy BC ∩ (AEF) = H.

Đánh giá

0

0 đánh giá