Bài 1.27 trang 18 sách bài tập Toán 8 Tập 1: Cho hai đa thức:
P = 4x3yz2 – 3x2y – 2x3yz2 + x2y – 2xy + y + 5;
Q = –x3yz2 – 2x2y + 3 + 3x3yz2 + xy – y + 2.
a) Thu gọn và xác định bậc của mỗi đa thức P và Q.
b) Xác định bậc của mỗi đa thức P + Q và P – Q.
Lời giải:
a) P = 4x3yz2 – 3x2y – 2x3yz2 + x2y – 2xy + y + 5
= (4x3yz2– 2x3yz2) + (–3x2y+ x2y) – 2xy + y + 5
= 2x3yz2 ‒ 2x2y– 2xy + y + 5.
Vậy P là đa thức bậc 3 + 1 + 2 = 6.
Q = –x3yz2 – 2x2y + 3 + 3x3yz2 + xy – y + 2
= (–x3yz2+ 3x3yz2) – 2x2y+ xy – y + (3 + 2)
= 2x3yz2– 2x2y+ xy – y + 5.
Vậy Q là đa thức bậc 3 + 1 + 2 = 6.
b)Ta có:
•P + Q
= 2x3yz2 ‒ 2x2y– 2xy + y + 5 + 2x3yz2– 2x2y+ xy – y + 5
= (2x3yz2 + 2x3yz2) + (‒2x2y– 2x2y) + (–2xy+ xy) + (y – y) + (5 + 5)
= 4x3yz2 ‒ 4x2y ‒ xy + 10.
Đa thức P + Q là đa thức bậc 6.
• P ‒ Q
= 2x3yz2 ‒ 2x2y– 2xy + y + 5 ‒ (2x3yz2– 2x2y+ xy – y + 5)
= 2x3yz2 ‒ 2x2y– 2xy + y + 5 ‒ 2x3yz2+ 2x2y‒ xy + y ‒ 5
= (2x3yz2 ‒ 2x3yz2) + (‒2x2y+ 2x2y) + (–2xy‒ xy) + (y + y) + (5 ‒ 5)
= ‒3xy + 2y
Đa thức P ‒ Q là đa thức bậc 2.
Bài 1.28 trang 18 sách bài tập Toán 8 Tập 1: Cho đa thức P = 5x2y – 2xy2 + xy – x + y – 2.
a) Tìm đa thức Q, biết rằng P + Q = (x + y)(2xy + 2y2 – 1).
b) Tìm đa thức R, biết rằng P – R = –xy(x – y).
Lời giải:
Ta có:
P + Q = (x + y)(2xy + 2y2 – 1)
= x.2xy + x.2y2 + x.(‒1) + y.2xy + y.2y2 + y.(‒1)
= 2x2y + 2xy2 ‒ x + 2xy2 + 2y3 ‒ y
= 2x2y + (2xy2 + 2xy2) ‒ x + 2y3 ‒ y
= 2x2y + 4xy2 ‒ x + 2y3 ‒ y
Do đó P + Q = 2x2y + 4xy2 ‒ x + 2y3 ‒ y
Suy ra Q = 2x2y + 4xy2 ‒ x + 2y3 ‒ y ‒ P
= 2x2y + 4xy2 ‒ x + 2y3 ‒ y ‒ (5x2y – 2xy2 + xy – x + y – 2)
= 2x2y + 4xy2 ‒ x + 2y3 ‒ y ‒ 5x2y + 2xy2 ‒ xy + x ‒ y + 2)
= (2x2y ‒ 5x2y) + (4xy2 + 2xy2) + (‒x + x) + 2y3 ‒ xy + (‒ y ‒ y) + 2
= ‒3x2y + 6xy2 + 2y3 ‒ xy ‒ 2y + 2.
b) Ta có P – R = –xy(x – y) = ‒x2y + xy2
Nên R = P ‒ (‒x2y + xy2)
Suy ra R = 5x2y – 2xy2 + xy – x + y – 2+ x2y – xy2
= (5x2y + x2y) + (–2xy2 ‒ xy2) + xy – x + y – 2
= 6x2y ‒ 3xy2 + xy – x + y – 2.
Bài 1.29 trang 18 sách bài tập Toán 8 Tập 1: Thực hiện phép nhân:
a) ;
b) (x2 – 2xy)(x3 + 3x2y – 5xy2 – y3).
Lời giải:
a)
.
b) (x2 – 2xy)(x3 + 3x2y – 5xy2 – y3)
= x2(x3 + 3x2y – 5xy2 – y3) ‒ 2xy(x3 + 3x2y – 5xy2 – y3)
= x5 + 3x4y ‒ 5x3y2 ‒ x2y3 ‒ 2x4y ‒ 6x3y2 + 10x2y3 + 2xy4
= x5 + (3x4y ‒ 2x4y) + (‒5x3y2 ‒ 6x3y2) + (‒x2y3 + 10x2y3) + 2xy4
= x5 + x4y ‒ 11x3y2 + 9x2y3 + 2xy4.
Bài 1.30 trang 18 sách bài tập Toán 8 Tập 1: Rút gọn rồi tính giá trị của biểu thức sau khi x = 1; y = 8:
A = (5xy – 4y2)(3x2 + 4xy) – 15xy(x + y)(x – y).
Lời giải:
Rút gọn biểu thức A ta có:
A = (5xy – 4y2)(3x2 + 4xy) – 15xy(x + y)(x – y)
= 5xy.(3x2 + 4xy) – 4y2.(3x2 + 4xy) – (15x2y + 15xy2)(x – y)
= 15x3y + 20x2y2 ‒12x2y2 ‒ 16xy – (15x3y – 15x2y2 + 15x2y2 – 15xy3)
= 15x3y + 20x2y2 ‒12x2y2 ‒ 16xy3 ‒ 15x3y + 15xy3
= (15x3y ‒ 15x3y) + (20x2y2 ‒12x2y2) + (‒16xy3 + 15xy3)
= 8x2y2 ‒ xy3.
Khi x = 1; y = 8 ta có:
A = 8.12.82 ‒ 1.83 = 0.