Với giải Vở thực hành Toán 8 Bài tập cuối chương 1 sách Kết nối tri thức hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong VTH Toán 8. Mời các bạn đón xem:
Giải VTH Toán lớp 8 Bài tập cuối chương 1
B – CÂU HỎI TRẮC NGHIỆM
Chọn phương án đúng trong mỗi câu sau:
Câu 1 trang 23 vở thực hành Toán 8 Tập 1: Đơn thức −23x2yz3 có:
A. hệ số −2, bậc 8.
B. hệ số −23, bậc 5.
C. hệ số −1, bậc 9.
D. hệ số −23, bậc 6.
Lời giải:
Đáp án đúng là: D
Đơn thức −23x2yz3 có hệ số là −23 và có bậc là: 2 + 1 + 3 = 6.
A. T = x2y – xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
B. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
C. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 – xy – 1.
D. T = x2y + xy2 + xy – 1 và H = 5x2y + 5xy2 + xy – 1.
Lời giải:
Đáp án đúng là: B
Ta có:
• T = (3x2y – 2xy2 + xy) + (–2x2y + 3xy2 + 1)
= 3x2y – 2xy2 + xy – 2x2y + 3xy2 + 1
= (3x2y – 2x2y) + (3xy2 – 2xy2) + xy + 1
= x2y + xy2 + xy + 1.
• H = (3x2y – 2xy2 + xy) – (–2x2y + 3xy2 + 1)
= 3x2y – 2xy2 + xy + 2x2y – 3xy2 – 1
= (3x2y + 2x2y) – (3xy2 + 2xy2) + xy – 1
= 5x2y – 5xy2 + xy – 1.
Câu 3 trang 23 vở thực hành Toán 8 Tập 1: Tích của hai đơn thức 6x2yz và −2y2z2 là đơn thức:
A. 4x2y3z3.
B. −12x2y3z3.
C. −12x3y3z3.
D. 4x3y3z3.
Lời giải:
Đáp án đúng là: B
Ta có 6x2yz.(−2y2z2) = [6.(−2)].x2.(y.y2).(z.z2) = −12x2y3z3.
A. −4x2y + 3xy2.
B. −4xy2 + 3x2y.
C. −10x2y + 4xy2.
D. −10x2y + 4xy2.
Lời giải:
Đáp án đúng là: A
Ta có (8x3y2 – 6x2y3) : (−2xy) = 8x3y2 : (−2xy) – 6x2y3 : (−2xy)
= −4x2y + 3xy2.
C – BÀI TẬP
Bài 5 trang 23 vở thực hành Toán 8 Tập 1: Một đa thức hai biến bậc hai thu gọn có thể có nhiều nhất
a) bao nhiêu hạng tử bậc 2? Cho ví dụ.
b) bao nhiêu hạng tử bậc nhất? Cho ví dụ.
c) bao nhiêu hạng tử khác 0? Cho ví dụ.
Lời giải:
Gọi M là một đa thức bậc hai thu gọn với hai biến x và y. Khi đó:
a) Các hạng tử bậc hai của M chỉ có thể đồng dạng với một trong ba đơn thức xy; x2 và y2. Do đó M có nhiều nhất là ba hạng tử bậc hai.
Ví dụ, đa thức bậc hai 2x2 – y2 + 4xy + 5; đa thức này có 3 hạng tử bậc hai là 2x2; y2 và 4xy.
b) Các hạng tử bậc nhất của M chỉ có thể đồng dạng với một trong hai đơn thức x và y. Do đó M có nhiều nhất là hai hạng tử bậc nhất.
Ví dụ, đa thức bậc hai 2x + 5y – 6; đa thức này có 2 hạng tử bậc nhất là 2x và 5y.
c) Các hạng tử khác 0 của M gồm các hạng tử bậc hai, bậc nhất và một hạng tử số (hạng tử tự do). Do đó M có 3 + 2 + 1 = 6 hạng tử khác 0.
Ví dụ: x2 + 2y2 – 4xy + 5x – 8y + 4; đa thức này có 3 hạng tử bậc hai, 2 hạng tử bậc nhất và 1 hạng tử số.
Bài 6 trang 24 vở thực hành Toán 8 Tập 1: Cho biểu thức 3x3(x5 – y5) + y5(3x3 – y3).
a) Rút gọn biểu thức đã cho.
b) Tính giá trị của biểu thức đã cho nếu biết
Lời giải:
a) Rút gọn: 3x3(x5 – y5) + y5(3x3 – y3) = 3x8 – y8.
b) Tính giá trị: Khi ta có:
Thay y8 = 3x8 vào biểu thức 3x8 – y8, ta được: 3x8 – 3x8 = 0.
Từ đó giá trị của biểu thức đã cho bằng 0 khi
Bài 7 trang 24 vở thực hành Toán 8 Tập 1: Rút gọn biểu thức
Lời giải:
Đặt và
Khi đó biểu thức đã cho có dạng:
Ta lần lượt tính P, Q và P + Q:
P + Q = (2x3 – 4x2y2 + xy – 2y3) + (2x3 + 4x2y2 – xy – 2y3)
= 4x3 – 4y3.
Vậy kết quả cuối cùng là
Tìm đa thức (ba biến x, y, z) biểu thị thể tích của chiếc hộp. Xác định bậc của đa thức đó.
Lời giải:
Sau khi gấp lại ta được chiếc hộp với 3 kích thước là x, y và z.
Do đó thể tích của nó là V = xyz.
Vậy V là một đa thức bậc 3.
(10x5y2 – 6x3y4 + 8x2y5) : D.
Lời giải:
Do –2x3y4 : D = xy2 nên D = −2x3y4 : xy2 = −2x2y2. Vậy ta có phép chia
(10x5y2 – 6x3y4 + 8x2y5) : (−2x2y2) = −5x3 + 3xy2 – 4y3.
Bài 10 trang 25 vở thực hành Toán 8 Tập 1: Tìm đơn thức E, biết rằng (6x2y3 – E) : 2xy = 3xy2 +
Lời giải:
Ta có (6x2y3 – E) : 2xy = (6x2y3 : 2xy) – (E : 2xy) = 3xy2 – E : 2xy.
So sánh kết quả với thương đã cho của phép chia, ta suy ra E : 2xy =
Vậy
Bài 11 trang 25 vở thực hành Toán 8 Tập 1: Làm phép chia sau theo hướng dẫn:
[8x3(2x – 5)2 – 6x2(2x – 5)3 + 10x(2x – 5)2] : 2x(2x – 5)2.
Hướng dẫn: Đặt y = 2x – 5.
Lời giải:
Đặt 2x – 5 = y.
• Thay thế 2x – 5 trong đa thức bị chia bởi y, ta được đa thức
A = 8x3y2 – 6x2y3 + 10xy2.
• Tương tự, thay thế 2x – 5 trong đơn thức chia bởi y, ta được B = 2xy2.
Từ đó, phép chia đã cho có dạng
A : B = (8x3y2 – 6x2y3 + 10xy2) : 2xy2.
• Thực hiện phép chia này ta được thương là 4x2 – 3xy + 5.
• Thay thế người lại, y bởi 2x – 5 trong đa thức thương, ta được
4x2 – 3x(2x – 5) + 5
= 4x2 – 6x2 + 15x + 5 = – 2x2 + 15x + 5.
Đó là thương của phép chia đã cho.
Xem thêm các bài giải Vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
Bài 7: Lập phương của một tổng. Lập phương của một hiệu
Bài 8: Tổng và hiệu hai lập phương