Giải SBT Toán 11 trang 112 Tập 1 Chân trời sáng tạo

189

Với lời giải SBT Toán 11 trang 112 Tập 1 chi tiết trong Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Bài 1 trang 112 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt là hai điểm trên hai cạnh SB, SD.

a) Tìm giao điểm của EF với (SAC).

b) Tìm giao điểm của BC với (AEF).

Lời giải:

Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt

a) ⦁ Trong mặt phẳng (ABCD), gọi O = AC ∩ BD.

Ta có O ∈ AC, AC ⊂ (SAC) nên O ∈ (SAC)

O ∈ BD, BD ⊂ (SBD) nên O ∈ (SBD)

Do đó O ∈ (SAC) ∩ (SBD)

⦁ Lại có S ∈ (SAC) và S ∈ (SBD) nên S ∈ (SAC) ∩ (SBD)

Suy ra (SAC) ∩ (SBD) = SO.

Trong mặt phẳng (SBD), gọi I = EF ∩ SO.

Ta có I ∈ SO, SO ⊂ (SAC) nên I ∈ (SAC)

Vậy EF ∩ (SAC) = I.

b) ⦁ Trong mặt phẳng (SBD), gọi K = EF ∩ BD.

Ta có K ∈ EF, EF ⊂ (AEF) nên K ∈ (AEF);

K ∈ BD, BD ⊂ (ABCD) nên K ∈ (ABCD)

Do đó K ∈ (ABCD) ∩ (AEF).

Lại có A ∈ (ABCD) và A ∈ (AEF) nên A = (ABCD) ∩ (AEF).

Suy ra (ABCD) ∩ (AEF) = AK.

⦁ Trong mặt phẳng (ABCD), gọi H = BC ∩ AK.

Ta có H ∈ AK, AK ⊂ (AEF) nên H ∈ (AEF).

Vậy BC ∩ (AEF) = H.

Bài 2 trang 112 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD. Gọi D, E, F lần lượt là ba điểm trên ba cạnh SA, SB, SC sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K. Chứng minh ba điểm I, J, K thẳng hàng.

Lời giải:

Cho hình chóp S.ABCD. Gọi D, E, F lần lượt là ba điểm trên ba cạnh SA, SB, SC

Ta có: I là giao điểm của DE và AB.

Suy ra:

⦁ I ∈ DE, mà DE ⊂ (DEF) nên I ∈ (DEF);

⦁ I ∈ AB, mà AB ⊂ (ABC) nên I ∈ (ABC).

Do đó I ∈ (DEF) ∩ (ABC).

Tương tự, ta có J, K cũng thuộc giao tuyến của hai mặt phẳng (DEF), (ABC).

Vậy I, J, K thẳng hàng.

Bài 3 trang 112 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD sao cho EF cắt BC tại I, AD cắt EG tại H. Chứng minh ba đường thẳng CD, IG, HF cùng đi qua một điểm.

Lời giải:

Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD

Trong mặt phẳng (EHI), gọi O là giao điểm của HF và IG.

Ta có:

⦁ O ∈ HF, mà HF ⊂ (ACD), suy ra O ∈ (ACD);

⦁ O ∈ IG, mà IG ⊂ (BCD), suy ra O ∈ (BCD).

Do đó, O ∈ (ACD) ∩ (BCD) (1)

Mặt khác, (ACD) ∩ (BCD) = CD (2)

Từ (1) và (2), suy ra O ∈ CD.

Lại có O = HF ∩ IG nên O là giao điểm của ba đường thẳng CD, IG, HF.

Vậy ba đường thẳng CD, IG, HF cùng đi qua một điểm.

Bài 4 trang 112 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G sao cho EB > AE, AF > FC, BG > GD. Tìm giao tuyến của các cặp mặt phẳng (EFG) và (ACD), (EFG) và (BCD), (EFG) và (ABD).

Lời giải:

Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G

⦁ Ta có EF ⊂ (ABC) và EF ⊂ (EFG) nên (EFG) ∩ (ABC) = EF.

⦁ Trong mặt phẳng (ABC), gọi I là giao điểm của EF và BC.

Trong mặt phẳng (BCD), gọi H là giao điểm của IG và CD.

Ta có H ∈ IG, mà IG ⊂ (EFG) nên H ∈ (EFG)

Lại có F ∈ (EFG) nên FH ⊂ (EFG) (1)

Ta cũng có F ∈ AC, mà AC ⊂ (ACD)

H ∈ CD, mà CD ⊂ (ACD)

Do đó FH ⊂ (ACD) (2)

Từ (1) và (2) suy ra (EFG) ∩ (ACD) = FH.

⦁ Tương tự, ta cũng có:

HG ⊂ (EFG) và HG ⊂ (BCD) nên (EFG) ∩ (BCD) = HG;

GE ⊂ (EFG) và GE ⊂ (ABD) nên (EFG) ∩ (ABD) = GE.

Vậy (EFG) ∩ (ACD) = FH, (EFG) ∩ (BCD) = HG, (EFG) ∩ (ABD) = GE.

Đánh giá

0

0 đánh giá