Với lời giải SBT Toán 11 trang 122 Tập 1 chi tiết trong Bài 3: Đường thẳng và mặt phẳng song song sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 3: Đường thẳng và mặt phẳng song song
Bài 3 trang 122 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SAB, I là trung điểm của AB và M là điểm thuộc cạnh AD sao cho AM = AD. Đường thẳng đi qua M và song song với AB cắt CI tại N. Chứng minh:
a) NG // (SCD);
b) MG // (SCD).
Lời giải:
a) Gọi F là giao điểm của MN và BC.
Ta có MN // AB, suy ra NF // BI (vì F ∈ MN, I ∈ AB).
Trong ∆CIB có NF // BI, nên theo định lí Thalès ta có: (1)
Mặt khác, AM = AD suy ra
Lại có MF // AB // DC nên (2)
Từ (1) và (2) suy ra
Trong ∆SAB, ta có G là trọng tâm nên .
Trong ∆SIC, ta có suy ra GN // SC (định lí Thalès đảo).
Mà SC ⊂ (SDC), do đó NG // (SDC).
b) Trong mặt phẳng (ABCD), gọi O là giao điểm của MI và DC.
Trong ∆OCI có MN // OC (do O ∈ DC), suy ra (theo định lí Thalès).
Mà (G là trọng tâm của ∆SAB).
Do đó, trong ∆SOI có , suy ra MG // OS (định lí Thalès đảo).
Mà OS ⊂ (SDC), do đó MG // (SDC).
Bài 4 trang 122 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của hai cạnh AB và CD, P là trung điểm của SA. Chứng minh:
a) MN song song với các mặt phẳng (SBC) và (SAD);
b) SB song song với (MNP);
c) SC song song với (MNP).
d) Gọi G1 và G2 theo thứ tự là trọng tâm của hai tam giác ABC và SBC. Chứng minh G1G2 song song với (SAD).
Lời giải:
a) Hình bình hành ABCD có M, N lần lượt là trung điểm của hai cạnh AB và CD nên MN // AD // BC
Ta có MN // BC và BC ⊂ (SBC), suy ra MN // (SBC);
MN // AD và AD ⊂ (SAD), suy ra MN // (SAD).
Vậy MN song song với các mặt phẳng (SBC) và (SAD).
b) Trong ∆SAB, có P, M lần lượt là trung điểm của SA, AB nên PM là đường trung bình, suy ra PM // SB
Mà PM ⊂ (MNP), suy ra SB // (MNP).
c) Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua S và song song AB.
Gọi E là giao điểm của MP và d.
Ta có d // AB hay ES // AB, mà AB // CD nên ES // DC, tức là ES // NC (1)
Ta cũng có ES // MB và EM // SB nên MBSE là hình bình hành, suy ra ES = MB
Mà MB = NC (do M, N lần lượt là trung điểm của AB, DC và AB = DC)
Suy ra ES = NC (2)
Từ (1) và (2) suy ra ESCN là hình bình hành nên SC // NE.
Lại có NE ⊂ (MNP), suy ra SC // (MNP).
d) Gọi I là trung điểm của BC.
Do G1 và G2 theo thứ tự là trọng tâm của ∆ABC và ∆SBC nên
Trong ∆SIA, ta có , suy ra G1G2 // SA (định lí Thalès đảo)
Mà SA ⊂ (SAD), nên G1G2 // (SAD).
Bài 5 trang 122 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi (α) là mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA. Tìm giao tuyến của mặt phẳng (α) với các mặt của hình chóp.
Lời giải:
Gọi N, P, R lần lượt là trung điểm của AD, SD, SB.
Xét ∆ABD có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của tam giác. Do đó MN // BD.
Xét ∆SBD có P, R lần lượt là trung điểm của SD, SB nên PR là đường trung bình của tam giác. Do đó PR // BD.
Từ các kết quả trên ta có: MN // PR (do cùng song song với BD).
Suy ra bốn điểm M, N, P, R tạo thành một mặt phẳng (MNPR).
Ta có MN // BD và MN ⊂ (MNPR) nên BD // (MNPR)
Tương tự, ta cũng có SA // (MNPR)
Ta thấy (MNPR) đi qua M và song song với BD, và SA nên chính là mp(α).
Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua S và d // AB // CD.
Khi đó, giả sử MR cắt d tại I, PI cắt SC tại Q.
Lúc này, mặt phẳng (α) là (MNPI).
Ta có MN ⊂ (ABCD), MN ⊂ (MNPI) nên (MNPI) ∩ (ABCD) = MN hay (α) ∩ (ABCD) = MN.
Tương tự, (α) ∩ (SAD) = NP, (α) ∩ (SCD) = PQ, (α) ∩ (SBC) = QR, (α) ∩ (SAB) = MR.
Xem thêm lời bài sách bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: