Với lời giải Toán 8 trang 95 Tập 1 chi tiết Bài 1: Định lí Pythagore sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Giải Toán 8 Bài 1: Định lí Pythagore
Hoạt động 1 trang 94, 95 Toán 8 Tập 1: Thực hiện các hoạt động sau:
a) Vẽ và cắt giấy để có 4 hình tam giác vuông như nhau với độ dài cạnh huyền là a, độ dài hai cạnh góc vuông là b và c, trong đó a, b, c có cùng đơn vị độ dài (Hình 2).
b) Vẽ hình vuông ABCD có cạnh là b + c như Hình 3. Đặt 4 hình tam giác vuông đã cắt ở câu a lên hình vuông ABCD vừa vẽ, phần chưa bị che đi là hình vuông MNPQ với độ dài cạnh là a (Hình 4).
c) Gọi S1 là diện tích của hình vuông ABCD. Gọi S2 là tổng diện tích của hình vuông MNPQ và diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ. So sánh S1 và S2.
d) Dựa vào kết quả ở câu c, dự đoán mối liên hệ giữa a2 và b2 + c2.
Lời giải:
a) Học sinh thực hiện theo hướng dẫn.
b) Học sinh thực hiện theo hướng dẫn.
c) Diện tích của hình vuông ABCD là: S1 = (b + c)2 (đơn vị diện tích).
Diện tích của hình vuông MNPQ là: a2 (đơn vị diện tích).
Diện tích của tam giác vuông AQM là: (đơn vị diện tích).
Tổng diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ là:
(đơn vị diện tích).
Khi đó ta có: S2 = a2 + 2bc (đơn vị diện tích).
d) Theo câu b, ta có: diện tích của hình vuông ABCD bằng tổng diện tích của hình vuông MNPQ và diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ, hay S1 = S2
Do đó (b + c)2 = a2 + 2bc
Hay b2 + 2bc + c2 = a2 + 2bc
Suy ra b2 + c2 = a2.
Vậy a2 = b2 + c2.
Luyện tập 1 trang 95 Toán 8 Tập 1: Tính độ dài đường chéo của hình vuông có độ dài cạnh là a.
Lời giải:
Do tam giác ABC vuông tại B nên theo định lí Pythagore ta có:
AC2 = AB2 + BC2 = a2 + a2 = 2a2
Suy ra .
Vậy độ dài đường chéo của hình vuông đó là .
II. Định lí Pythagore đảo
Hoạt động 2 trang 95 Toán 8 Tập 1: Thực hiện các hoạt động sau:
a) Vẽ một tam giác ABC có AB = 3 cm, AC = 4 cm và BC = 5 cm;
b) Tính và so sánh diện tích của hình vuông có cạnh BC với tổng diện tích của hai hình vuông tương ứng có cạnh AB và AC (Hình 6);
c) Kiểm tra xem góc A của tam giác ABC có phải là góc vuông hay không.
Lời giải:
a) Vẽ tam giác ABC có AB = 3 cm, AC = 4 cm và BC = 5 cm.
Bước 1. Vẽ đoạn thẳng AC = 4 cm.
Bước 2. Vẽ cung tròn tâm A bán kính 3 cm.
Bước 3. Vẽ cung tròn tâm C bán kính 5 cm.
Bước 4. Hai cung tròn trên cắt nhau tại hai điểm. Lấy 1 trong 2 giao điểm đó, kí hiệu là điểm B.
Nối các đoạn thẳng BA, BC ta được tam giác ABC như yêu cầu.
b) Diện tích của hình vuông có cạnh AB = 3 cm là: 32 = 9 (cm2).
Diện tích của hình vuông có cạnh AC = 4 cm là: 42 = 16 (cm2).
Tổng diện tích của hai hình vuông trên là: 9 + 16 = 25 (cm2).
Diện tích của hình vuông có cạnh BC = 5 cm là: 52 = 25 (cm2).
Vậy diện tích của hình vuông có cạnh BC bằng tổng diện tích của hai hình vuông tương ứng có cạnh AB và AC.
c) Dùng thước êke (hoặc thước đo góc) ta xác định được góc A của tam giác ABC là góc vuông.
Xem thêm các lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:
Hoạt động 1 trang 94, 95 Toán 8 Tập 1: Thực hiện các hoạt động sau:...
Luyện tập 1 trang 95 Toán 8 Tập 1: Tính độ dài đường chéo của hình vuông có độ dài cạnh là a...
Hoạt động 2 trang 95 Toán 8 Tập 1: Thực hiện các hoạt động sau:....
Bài 4 trang 97 Toán 8 Tập 1: Cho một tam giác đều cạnh a.....
Xem thêm các bài giải SGK Toán lớp 8 Cánh diều hay, chi tiết khác: