Giải Toán 8 trang 13 Tập 1 Cánh diều

241

Với lời giải Toán 8 trang 13 Tập 1 chi tiết Bài 2: Các phép tính với đa thức nhiều biến sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 2: Các phép tính với đa thức nhiều biến

Luyện tập 2 trang 13 Toán 8 Tập 1Với ba đa thức A, B, C trong Ví dụ 3, hãy tính:

a) B – C;

b) (B – C) + A.

Lời giải:

Trong Ví dụ 3 có các đa thức: A = x2 – 2xy + y2; B = 2x2 – y2; C = x2 – 3xy.

a) B – C = (2x2 – y2) – (x2 – 3xy)

= 2x2 – y– x+ 3xy = (2x– x2) + 3xy – y2

= x+ 3xy – y2;

b) (B – C) + A = (x+ 3xy – y2) + (x2 – 2xy + y2)

= x+ 3xy – y+ x2 – 2xy + y2

= (x+ x2) + (3xy – 2xy) + (y– y2)

= 2x2 + xy.

Hoạt động 3 trang 13 Toán 8 Tập 1: a) Tính tích: 3x2 . 8x4;

b) Nêu quy tắc nhân hai đơn thức một biến.

Lời giải:

a) Ta có 3x2 . 8x4 = (3 . 8) (x2 . x4) = 24x6.

b) Quy tắc nhân hai đơn thức một biến:

Muốn nhân hai đơn thức một biến ta làm như sau:

• Nhân các hệ số với nhau và nhân các phần biến với nhau;

• Thu gọn đơn thức nhận được ở tích.

Luyện tập 3 trang 13 Toán 8 Tập 1Tính tích của hai đơn thức: x3y7 và −2x5y3

Lời giải:

Tích của hai đơn thức đã cho là:

x3y7 . (−2x5y3) = −2 (x3. x5) (y7. y3) = −2x8y10.

Hoạt động 4 trang 13 Toán 8 Tập 1: a) Tính tích: 11x3 . (x2 – x + 1);

b) Nêu quy tắc nhân đơn thức với đa thức trong trường hợp một biến.

Lời giải:

a) Ta có: 11x3 . (x2 – x + 1) = 11x3 . x2 – 11x3 . x + 11x3 . 1

= 11x5 – 11x4 + 11x3.

b) Quy tắc nhân đơn thức với đa thức trong trường hợp một biến là:

Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng đơn thức của đa thức rồi cộng các kết quả với nhau.

Đánh giá

0

0 đánh giá