Luyện tập 3 trang 13 Toán 8 Tập 1 Cánh diều | Giải bài tập Toán lớp 8

1 K

Với giải Luyện tập 3 trang 13 Toán 8 Tập 1 Cánh diều chi tiết trong Bài 2: Các phép tính với đa thức nhiều biến giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 2: Các phép tính với đa thức nhiều biến

Video bài giải Toán lớp 8 Bài 2: Các phép tính với đa thức nhiều biến - Cánh diều

Luyện tập 3 trang 13 Toán 8 Tập 1: Tính tích của hai đơn thức: x3y7 và −2x5y3.

Lời giải:

Tích của hai đơn thức đã cho là:

x3y7 . (−2x5y3) = −2 (x3. x5) (y7. y3) = −2x8y10.

Lý thuyết Nhân đa thức

Nhân hai đơn thức

Để nhân hai đơn thức, ta nhân các hệ số với nhau, nhân các phần biến với nhau; thu gọn đơn thức nhận được ở tích.

Ví dụ: (3x2y)(4xy)=[(3.4)].(x2.x).(y.y)=12.x3.y2

Nhân đơn thức với đa thức 

Để nhân đơn thức với đa thức, ta nhân đơn thức đó với từng đơn thức của đa thức, rồi cộng các kết quả với nhau.

Ví dụ:

3x2y(2x2yxy+3y2)=(3x2y).(2x2y)(3x2y).(xy)+(3x2y).(3y2)=3.2.(x2.x2)(y.y)3.(x2.x).(y.y)+3.3.x2.(y.y2)=6x4y23x3.y2+9x2y3

Nhân hai đa thức

Để nhân hai đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia, rồi cộng các kết quả với nhau.

Ví dụ:

(xy+1)(xy3)=(xy).(xy)+xy3xy3=x2y22xy3

Đánh giá

0

0 đánh giá