Luyện tập 7 trang 16 Toán 8 Tập 1 Cánh diều | Giải bài tập Toán lớp 8

0.9 K

Với giải Luyện tập 7 trang 16 Toán 8 Tập 1 Cánh diều chi tiết trong Bài 2: Các phép tính với đa thức nhiều biến giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 2: Các phép tính với đa thức nhiều biến

Video bài giải Toán lớp 8 Bài 2: Các phép tính với đa thức nhiều biến - Cánh diều

Luyện tập 7 trang 16 Toán 8 Tập 1Tìm thương trong phép chia đa thức 12x3y3 – 6x4y3 + 21x3y4 cho đơn thức 3x3y3.

Lời giải:

Thương trong phép chia đa thức 12x3y3 – 6x4y3 + 21x3y4 cho đơn thức 3x3y3 là:

(12x3y3 – 6x4y3 + 21x3y4): (3x3y3)

= 12x3y3 : 3x3y3– 6x4y3 : 3x3y3+ 21x3y4: 3x3y3

= 4 – 2x+ 4y.

Lý thuyết Chia đa thức cho đơn thức

Hai đơn thức chia hết cho nhau

Đơn thức A chia hết cho đơn thức B (B0) khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.

Chia đa thức cho đơn thức 

Muốn chia đơn thức A cho đơn thức B (với A chia hết cho B), ta làm như sau:

- Chia hệ số của A cho hệ số của B.

- Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.

- Nhân các kết quả vừa tìm được cho nhau.

Ví dụ:

 16x4y3:(8x3y2)=(16:(8)).(x4:x3).(y3:y2)=2xy

Đa thức chia hết cho đơn thức

Đa thức A chia hết cho B (B0) khi mỗi đơn thức của A chia hết cho B.

Chia đa thức cho đơn thức

Muốn chia một đa thức cho một đơn thức (trường hợp chia hết), ta chia từng hạng tử của đa thức cho đơn thức đó, rồi cộng các kết quả tìm được với nhau.

Ví dụ:

(x2y+y2x):xy=x2y:xy+y2x:xy=x+y

Đánh giá

0

0 đánh giá