Giải Toán 8 trang 9 Tập 1 Cánh diều

372

Với lời giải Toán 8 trang 9 Tập 1 chi tiết trong Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến

HĐ6 trang 9 Toán 8 Tập 1: Cho đa thức: P=x3+2x2y+x2y+3xy2+y3

Thực hiện phép cộng các đơn thức đồng dạng  sao cho đa thức P không còn hai đơn thức nào đồng dạng.

Lời giải:

Ta có: P=x3+2x2y+x2y+3xy2+y3P=x3+(2x2y+x2y)+3xy2+y3P=x3+3x2y+3xy2+y3

Luyện tập vận dụng 6 trang 9 Toán 8 Tập 1: Thu gọn đa thức: R=x32x2yx2y+3xy2y3

Lời giải:

Ta có: R=x32x2yx2y+3xy2y3R=x3+(2x2yx2y)+3xy2y3R=x33x2y+3xy2y3

HĐ7 trang 9 Toán 8 Tập 1: Cho đa thức: P=x2y2. Đa thức P được xác định bằng biểu thức nào? Tính giá trị của P tại x = 1; y = 1

Lời giải:

Đa thức P được xác định bằng biểu thức: x2y2

Thay x = 1; y = 1 vào đa thức P ta được:

P=1212=0

Vậy đa thức P = 0 tại x = 1; y=1

Luyện tập vận dụng 7 trang 9 Toán 8 Tập 1: Tính giá trị của đa thức: Q=x33x2y+3xy2y3 tại x = 2; y = 1

Lời giải:

Thay x = 2; y = 1 vào đa thức Q ta được:

Q=233.22.1+3.2.1313=812+61=1

Vậy đa thức Q = 1 tại x = 2; y = 1

Đánh giá

0

0 đánh giá