Giải Toán 8 trang 53 Tập 1 Kết nối tri thức

341

Với lời giải Toán 8 trang 53 Tập 1 chi tiết trong Bài 11: Hình thang cân sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 11: Hình thang cân

Luyện tập 1 trang 53 Toán 8 Tập 1: Tính các góc của hình thang cân ABCD (AB // CD), biết C^=40° (H.3.15).

Luyện tập 1 trang 53 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Hình thang cân ABCD (AB // CD) nên ta có:

 A^=B^;D^=C^=40° ;

 A^+B^+C^+D^=360° .

Khi đó: A^+A^+40°+40°=360°

Hay 2A^+80°=360°

Suy ra 2A^=360°80°=280° .

Do đó A^=140° nên B^=140° .

Vậy A^=140° ; B^=140° ; C^=40°;D^=40° .

2. Tính chất của hình thang cân

HĐ1 trang 53 Toán 8 Tập 1: Cho hình thang cân ABCD, AB // CD và AB < CD (H.3.16).

a) Từ A và B kẻ AH ⊥ DC, BI ⊥ DC, H ∈ CD, I ∈ CD. Chứng minh rằng AH = BI bằng cách chứng minh ∆AHI = ∆IBA.

b) Chứng minh ∆AHD = ∆BIC, từ đó suy ra AD = BC.

HĐ1 trang 53 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

a) Vì ABCD là hình thang cân (AB // CD) nên BAI^=AIH^ (hai góc so le trong).

Ta có AH ⊥ DC, BI ⊥ DC suy ra AH // BI.

Do đó AIB^=HAI^ (hai góc so le trong).

Xét ∆AHI và ∆IBA có:

BAI^=AIH^ (chứng minh trên);

Cạnh AI chung;

AIB^=HAI^ (hai góc so le trong).

Do đó ∆AHI = ∆IBA (c.g.c).

Suy ra AH = BI (hai cạnh tương ứng).

b) Vì ABCD là hình thang cân (AB // CD) nên C^=D^ (1)

Xét ∆AHD vuông tại H có DAH^+D^=90° (2) (trong tam giác vuông, hai góc nhọn có tổng số đo bằng 90°).

Tương tự, ∆BIC vuông tại I có CBI^+C^=90° (3)

Từ (1), (2) và (3) suy ra DAH^=CBI^ .

Xét ∆AHD và ∆BIC có:

AHD^=BIC^=90° (vì AH ⊥ DC, BI ⊥ DC, H ∈ CD, I ∈ CD);

AH = BI (chứng minh câu a);

DAH^=CBI^ (chứng minh trên).

Do đó ∆AHD = ∆BIC (cạnh góc vuông – góc nhọn kề).

Suy ra AD = BC (hai cạnh tương ứng).

Luyện tập 2 trang 53 Toán 8 Tập 1: Cho tứ giác ABCD như Hình 3.18. Biết rằng A^=B^=D^1 . Chứng minh rằng AD = BC.

Luyện tập 2 trang 53 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Ta có A^=D^1 mà hai góc này ở vị trí đồng vị nên AB // CD.

Suy ra tứ giác ABCD là hình thang.

Mặt khác hình thang ABCD có A^=B^ nên ABCD là hình thang cân.

Do đó AD = BC (đpcm).

Luyện tập 1 trang 53 Toán 8 Tập 1Tính các góc của hình thang cân ABCD (AB // CD), biết  (H.3.15).

Luyện tập 1 trang 53 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Hình thang cân ABCD (AB // CD) nên ta có:

 A^=B^;D^=C^=40° ;

 A^+B^+C^+D^=360° .

Khi đó: A^+A^+40°+40°=360°

Hay 2A^+80°=360°

Suy ra 2A^=360°80°=280° .

Do đó A^=140° nên B^=140° .

Vậy A^=140° ; B^=140° ; C^=40°;D^=40° .

HĐ1 trang 53 Toán 8 Tập 1: Cho hình thang cân ABCD, AB // CD và AB < CD (H.3.16).

a) Từ A và B kẻ AH ⊥ DC, BI ⊥ DC, H ∈ CD, I ∈ CD. Chứng minh rằng AH = BI bằng cách chứng minh ∆AHI = ∆IBA.

b) Chứng minh ∆AHD = ∆BIC, từ đó suy ra AD = BC.

HĐ1 trang 53 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

a) Vì ABCD là hình thang cân (AB // CD) nên BAI^=AIH^ (hai góc so le trong).

Ta có AH ⊥ DC, BI ⊥ DC suy ra AH // BI.

Do đó AIB^=HAI^ (hai góc so le trong).

Xét ∆AHI và ∆IBA có:

BAI^=AIH^ (chứng minh trên);

Cạnh AI chung;

AIB^=HAI^ (hai góc so le trong).

Do đó ∆AHI = ∆IBA (c.g.c).

Suy ra AH = BI (hai cạnh tương ứng).

b) Vì ABCD là hình thang cân (AB // CD) nên C^=D^ (1)

Xét ∆AHD vuông tại H có DAH^+D^=90° (2) (trong tam giác vuông, hai góc nhọn có tổng số đo bằng 90°).

Tương tự, ∆BIC vuông tại I có null (3)

Từ (1), (2) và (3) suy ra DAH^=CBI^ .

Xét ∆AHD và ∆BIC có:

AHD^=BIC^=90° (vì AH ⊥ DC, BI ⊥ DC, H ∈ CD, I ∈ CD);

AH = BI (chứng minh câu a);

DAH^=CBI^ (chứng minh trên).

Do đó ∆AHD = ∆BIC (cạnh góc vuông – góc nhọn kề).

Suy ra AD = BC (hai cạnh tương ứng).

Luyện tập 2 trang 53 Toán 8 Tập 1: Cho tứ giác ABCD như Hình 3.18. Biết rằng A^=B^=D^1 . Chứng minh rằng AD = BC.

Luyện tập 2 trang 53 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Ta có A^=D^1 mà hai góc này ở vị trí đồng vị nên AB // CD.

Suy ra tứ giác ABCD là hình thang.

Mặt khác hình thang ABCD có A^=B^ nên ABCD là hình thang cân.

Do đó AD = BC (đpcm).

Đánh giá

0

0 đánh giá