Bài 3.7 trang 55 Toán 8 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 8

2.1 K

Với giải Bài 3.7 trang 55 Toán 8 Tập 1 Kết nối tri thức chi tiết trong Bài 11: Hình thang cân giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 11: Hình thang cân

Bài 3.7 trang 55 Toán 8 Tập 1: Hai tia phân giác của hai góc A, B của hình thang cân ABCD (AB // CD) cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng EC = ED.

Lời giải:

Bài 3.7 trang 55 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Vì ABCD là hình thang cân nên DAB^=ABC^;C^=D^;AD=BC .

Theo đề bài, ta có AE, BE lần lượt là tia phân giác của BAD^  ABC^ .

Suy ra A^1=A^2=12DAB^;B^1=B^2=12ABC^ .

 DAB^=ABC^ nên A^1=A^2=B^1=B^2 .

Xét tam giác EAB cân tại E (vì A^1=B^1 ) nên EA = EB.

Xét ∆ADE và ∆BCE có:

EA = EB (chứng minh trên);

A^2=B^2 (chứng minh trên);

AD = BC (chứng minh trên)

Do đó ∆ADE = ∆BCE (c.g.c).

Suy ra EC = ED (hai cạnh tương ứng).

Sơ đồ tư duy Hình thang cân.

Từ khóa :
toán 8
Đánh giá

0

0 đánh giá