Giải Toán 11 trang 48 Tập 1 Chân trời sáng tạo

189

Với lời giải Toán 11 trang 48 Tập 1 chi tiết trong Bài 1: Dãy số sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 1: Dãy số

Hoạt động khám phá 4 trang 48 Toán 11 Tập 1: Cho hai dãy số (an) và (bn) được xác định như sau: an = 3n + 1, bn = – 5n.

a) So sánh an và an + 1, ∀n ∈ ℕ*.

b) So sánh bn và bn + 1, ∀n ∈ ℕ*.

Lời giải:

a) Ta có: an = 3n + 1, an + 1 = 3(n + 1) + 1 = 3n + 4

Vì n ∈ ℕ* nên 3n + 4 > 3n + 1 hay an + 1 > an.

b) Ta có: bn = – 5n, bn + 1 = – 5(n + 1) = – 5n – 5

Vì n ∈ ℕ* nên – 5n – 5 < – 5n hay bn – 1 < bn.

Thực hành 3 trang 48 Toán 11 Tập 1: Xét tính tăng, giảm của các dãy số sau:

a) (un) với un=2n1n+1;

b) (xn) với xn=n+24n;

c) (tn) với tn = (– 1)n . n2.

Lời giải:

a) Ta có: (un) với un+1=2n+11n+1+1=2n+1n+2

Xét hiệu

 un+1un=2n+1n+22n1n+1=2n2+3n+12n23n+2n+2n+1=3n+2n+1>0,n*.

Suy ra un+1 > un, ∀n ∈ ℕ*.

Vậy dãy số (un) là dãy số tăng.

b) Ta có: xn+1=n+1+24n+1=n+34.4n

Xét hiệu

 xn+1xn=n+34.4nn+14n=n+34.4n4n+44.4n=3n14.4n<0,n*.

Suy ra xn+1 < xn, ∀n ∈ ℕ*.

Vậy dãy số (xn) là dãy số giảm.

c) Ta có: tn+1 = (– 1)n+1 . (n + 1)2

Xét hiệu: tn+1 – tn = (– 1)n+1 . (n + 1)2 – ( – 1)n.n2

Với n chẵn:

tn+1 – tn = 0 – (n + 1)2 – n2 < 0, ∀n ∈ ℕ*.

Suy ra tn+1 < tn, ∀n ∈ ℕ*.

Vì vậy dãy số (tn) là dãy số giảm.

Với n lẻ:

tn+1 – tn = (n + 1)2 + n2 > 0, ∀n ∈ ℕ*.

Suy ra tn+1 > tn, ∀n ∈ ℕ*.

Vì vậy dãy số (tn) là dãy số tăng.

Đánh giá

0

0 đánh giá