Thực hành 4 trang 49 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

452

Với giải Thực hành 4 trang 49 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 1: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 1: Dãy số

Thực hành 4 trang 49 Toán 11 Tập 1: Xét tính bị chặn của các dãy số sau:

a) (an) với an=cosπn;

b) (bn) với bn=nn+1.

Lời giải:

a) Vì 1cosπn1 nên 1an1, ∀n ∈ ℕ*.

Do đó dãy số (an) bị chặn trên và chặn dưới.

Vì vậy dãy số (an) bị chặn.

b) Ta có: bn=nn+1=n+11n+1=11n+1

Vì n ∈ ℕ* nên 1n+1>0 nên 11n+1<1 hay bn < 1.

Vì n ∈ ℕ* nên nn+1>0 hay bn > 0.

Suy ra 0 < bn < 1. Do đó (bn) là dãy bị chặn trên và chặn dưới.

Vì vậy dãy số (bn) bị chặn.

Lý thuyết Dãy số bị chặn

Dãy số (un) được gọi là bị chặn trên nếu  số M sao cho unM, nN.

Dãy số (un) được gọi là bị chặn dưới nếu  số m sao cho unm, nN.

Dãy số (un) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho munM,nN.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá