Với giải Vận dụng 1 trang 114 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Vận dụng 1 trang 114 Toán lớp 10: Thời gian chạy 100 mét (đơn vị: giây) của các bạn học sinh ở hai nhóm A và B được ghi lại ở bảng sau:
Nhóm A |
12,2 |
13,5 |
12,7 |
13,1 |
12,5 |
12,9 |
13,2 |
12,8 |
Nhóm B |
12,1 |
13,4 |
13,2 |
12,9 |
13,7 |
|
|
|
Nhóm nào có thành tích chạy tốt hơn?
Phương pháp giải:
So sánh thời gian chạy trung bình của 2 nhóm.
Lời giải:
Số giây trung bình để chạy 100 mét của các bạn học sinh ở nhóm A là:
Số giây trung bình để chạy 100 mét của các bạn học sinh ở nhóm B là:
Vậy nhóm A có thành tích chạy tốt hơn.
Lý thuyết Số trung bình
1.1. Công thức tính số trung bình
• Giả sử ta có một mẫu số liệu là x1, x2, …, xn.
Số trung bình (hay số trung bình cộng) của mẫu số liệu này, kí hiệu là , được tính bởi công thức
.
• Giả sử mẫu số liệu được cho dưới dạng bảng tần số
Giá trị |
x1 |
x2 |
… |
xk |
Tần số |
n1 |
n2 |
… |
nk |
Khi đó, công thức tính số trung bình trở thành
.
Trong đó n = n1 + n2 + … + nk. Ta gọi n là cỡ mẫu.
Chú ý: Nếu kí hiệu là tần số tương đối (hay còn gọi là tần suất) của xk trong mẫu số liệu thì số trung bình còn có thể biểu diễn là: .
Ví dụ: Điểm số bài thực hành môn Toán của các bạn học sinh trong nhóm A là 10; 5; 7; 9; 8; 6, còn của các bạn nhóm B là 9; 9; 8; 7; 6; 8. Tính điểm trung bình của mỗi nhóm.
Hướng dẫn giải
Điểm trung bình của nhóm A là: .
Điểm trung bình của nhóm B là: .
1.2.Ý nghĩa của số trung bình
Số trung bình của mẫu số liệu được dùng làm đại diện cho các số liệu của mẫu. Nó là một số đo xu thế trung tâm của mẫu đó.
Ví dụ: Ở trong Ví dụ thuộc phần 1.1. trên, ta thấy điểm số trung bình của nhóm B cao hơn nhóm A (7,83 > 7,5), ta có thể nói rằng thành tích thực hành của nhóm B tốt hơn nhóm A.
Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 115 Toán lớp 10: Hãy tìm trung vị của các số liệu ở Vận dụng 1 và Vận dụng 2...
Thực hành 2 trang 117 Toán lớp 10: Hãy tìm tứ phân vị của các mẫu số liệu sau:...
Bài 1 trang 118 Toán lớp 10: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:...
Bài 2 trang 118 Toán lớp 10: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:...
Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 4: Các số đặc trưng mức độ phân tán của mẫu số liệu