Cho cos 2x = -4/5  với pi/4 <x< pi/2 . Tính sin x, cos x, Sin (x+ pi/3) , cos (2x- pi/4)

2.8 K

Với giải Bài 1.11 trang 10 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 2: Công thức lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 2: Công thức lượng giác

Bài 1.11 trang 10 SBT Toán 11 Tập 1: Cho cos 2x = 45  với π4<x<π2 . Tính sin x, cos x, sinx+π3 , cos2xπ4 .

Lời giải:

Vì π4  < x < π2  nên sin x > 0, cos x > 0. Áp dụng công thức hạ bậc, ta có

sin2x=1cos2x2=1452=910⇒ sin x = 310 .

cos2x=1+cos2x2=1+452=110⇒ cos x = 110 .

Theo công thức nhân đôi, ta có sin 2x = 2 sin x cos x = 2.310.110=610=35 

Theo công thức cộng, ta có

sinx+π3=sinxcosπ3+cosxsinπ3=310.12+110.32=3+3210

cos2xπ4=cos2xcosπ4+sin2xsinπ4=45.22+35.22=210

Lý thuyết Công thức lượng giác

1. Công thức cộng

sin(a+b)=sinacosb+cosasinbsin(ab)=sinacosbcosasinbcos(a+b)=cosacosbsinasinbcos(ab)=cosacosb+sinasinbtan(a+b)=tana+tanb1tanatanbtan(ab)=tanatanb1+tanatanb

2. Công thức nhân đôi

sin2a=2sinacosacos2a=cos2asin2a=2cos2a1=12sin2atan2a=2tana1tan2a

Suy ra, công thức hạ bậc:

 sin2a=1cos2a2,cos2a=1+cos2a2

Đánh giá

0

0 đánh giá