20 Bài tập Công thức lượng giác (sách mới) có đáp án – Toán 11

36.1 K

Tailieumoi.vn xin giới thiệu Bài tập Toán lớp 11 Công thức lượng giác, được sưu tầm và biên soạn theo chương trình học của 3 bộ sách mới. Bài viết gồm 20 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 11. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Công thức lượng giác. Mời các bạn đón xem:

Bài tập Toán 11 Công thức lượng giác

A. Bài tập Công thức lượng giác

Bài 1. Tính sin2a và tan2a biết cos a = 14 và 3π2<a<2π.

Hướng dẫn giải

Vì 3π2<a<2πnên sina < 0.

Ta có:

sin2a + cos2a = 1 ⇒ sin2a = 1 – cos2a = 1 - Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác = 1516

⇒ sina = 154.

Ta có: sin2a = 2sina cosa = 2.Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác.14 = -158

Ta có: tana = sinacosa=15

tan2a=2tana1tan2a=Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác==21514=157.

Bài 2. Tính

a) sinLý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác biết sin a = 34 và 0 < a < π2;

b) cos3π8.cosπ8 + sin3π8.sinπ8.

Hướng dẫn giải

a) Vì 0<a<π2 nên cosa > 0.

Ta có: sin2a + cos2a = 1 ⇒ cos2a = 1 – sin2a = 1-Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác=716

⇒ cosa = null.

Vậy sinLý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác=sinacosπ3cosasinπ3=34.1274.32=3218 .

Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Suy ra: cos3π8.cosπ8+sin3π8.sinπ8=24+24=22.

Bài 3. Tính

a) cos(–15°) + cos255°;

b) sin13π24sin5π24.

Hướng dẫn giải

a) Ta có:

cos(-15o) + cos255o = 2.cos15°+255°2.cos15°255°2

= 2.cos120o.cos(135o) = 2Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Vậy cos(–15°) + cos255° = 22.

b) Ta có:

Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Vậy sin13π24sin5π24=1+24.

Bài 4. Rút gọn biểu thức sau:

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

Hướng dẫn giải

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

⇔ P=2sinx

Vậy P = −2sin x.

Bài 5. Chứng minh rằng: cosαsinα=2cos(α+π4).

Hướng dẫn giải

Ta có:

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

Bài 6. Cho sinα=13 và π2<α<π. Tính các giá trị lượng giác của góc 2α.

Hướng dẫn giải

Do π2<α<π ⇒ cos α < 0.

Ta có: cos2α=1sin2α=89

⇒ cosα=223 (do cos α < 0).

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

tan2α=sin2αcos2α=429.97=427.

cot2α=1tan2α=728.

Bài 7. Tính α + β biết tanα=25,  tanβ=37.

Hướng dẫn giải

Áp dụng công thức cộng đối với tang, ta được: Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Vậy α+β=π4.

Bài 8. Cho cos2a=45, với π4<a<π2. Tính sina, cosa, Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác, sin2a, Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác.

Hướng dẫn giải

Vì π4<a<π2 nên sina > 0, cosa > 0.

• Áp dụng công thức hạ bậc, ta được: sin2a=1cos2a2=1+452=910

Suy ra sina=310 (do sina > 0)

• Áp dụng công thức hạ bậc, ta được: cos2a=1+cos2a2=1452=110.

Suy ra cosa=110.

• Áp dụng công thức cộng đối với sin, ta được:

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

=310.12+110.32=30+31020.

• Áp dụng công thức nhân đôi, ta được:

sin2a=2sinacosa=2.310.110=35.

• Áp dụng công thức cộng đối với côsin, ta được:

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Bài 9. Chứng minh rằng:

a) cos3x.sinxsin3x.cosx=14sin4x;

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Hướng dẫn giải

a) VT = cos3x.sinx – sin3x.cosx

= cosx.sinx.(cos2x – sin2x)

=12sin2x.cos2x

=14sin4x = VP.

Vậy ta có điều phải chứng minh.

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Bài 10. Cho ∆ABC. Chứng minh rằng:

a) sinA+sinB+sinC=4cosA2cosB2cosC2;

b) sinA+sinBcosA+cosB=cotC2;

c) sin2A+sin2B+sin2C=2SR2, với R là bán kính đường tròn ngoại tiếp ∆ABC và S là diện tích ∆ABC.

Hướng dẫn giải

∆ABC, có: A^+B^+C^=180°, suy ra A^+B^=180°C^

Do đó A^+B^2=90°C^2.

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

b) VT=sinA+sinBcosA+cosB=2sinA+B2cosAB22cosA+B2cosAB2

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Vậy ta có điều phải chứng minh.

c) VT = sin2A + sin2B + sin2C

= 2sin(A + B).cos(A – B) + 2sinC.cosC

= 2sin(180° – C).cos(A – B) + 2sinC.cosC

= 2sinC.cos(A – B) + 2sinC.cosC

= 2sinC.[cos(A – B) + cosC]

= 2sinC.[cos(A – B) + cos(180° – A – B)]

= 2sinC.[cos(A – B) – cos(A + B)]

= –4sinC.sinA.sin(–B)

= 4sinA.sinB.sinC

=4.a2R.b2R.c2R=abc4R.2R2=2SR2=VP.

Vậy ta có điều phải chứng minh.

Bài 11. Khẳng định nào sau đây đúng?

A. sin(2018a) = 2018sina.cosa.

B. sin(2018a) = 2018sin(1009a).cos(1009a).

C. sin(2018a) = 2sinacosa.

D. sin(2018a) = 2sin(1009a).cos(1009a).

Đáp án đúng là: D

Áp dụng công thức sin2α = 2sinα.cosα ta được

sin(2018a) = 2sin(1009a).cos(1009a).

Bài 12. Khẳng định nào sai trong các khẳng định sau?

A. sin2x=1cos2x2.

B. cos2x=1+cos2x2.

C. sinx=2sinx2cosx2.

D. cos3x=cos3xsin3x.

Đáp án đúng là: D

Ta có cos3x = 4cos3x - 3cosx.

Bài 13. Công thức nào sau đây đúng?

A. cos3a = 3cosa - 4cos3a. 

B. cos3a = 4cos3a - 3cosa.

C. cos3a = 3cos3a - 4cosa.

D. cos3a = 4cosa - 3cos3a.

Đáp án đúng là: B

Bài 14. Nếu tan(a+b) = 7, tan(a-b) = 4 thì giá trị đúng của tan2a là

A. 1127.   

B. 1127.   

C. 1327.    

D. 1327

Đáp án đúng là: A

Ta có tan2a = tan[(a+b)+(a-b)] = tana+b+tanab1+tana+b.tanab=7+417.4=1127.

Bài 15. Cho x, y là các góc nhọn và dương thỏa mãn cotx = 34., coty = 17. Tổng x+y bằng

A. π4.   

B. 3π4.   

C. π3.   

D. π.

Đáp án đúng là: B

Ta có cot(x+y) = cotx.coty1cotx+coty=34.17134+17=1.

Mặt khác 0<x,y<π2 suy ra 0<x+y<π. Do đó x+y = 3π4.

Bài 16. Trong ABC, nếu sinBsinC= 2cosA thì ABC là tam giác có tính chất nào sau đây?

A. Cân tại B.   

B. Cân tại A.   

C. Cân tại C.   

D. Vuông tại B.

Đáp án đúng là: A

Ta có sinBsinC= 2cosAsinB = 2sinC.cosA = sin(C+A)+sin(C-A)

Mặt khác A+B+C = πB = π-(A+C) sinB = sin(A+C).

Do đó, ta được sin(C-A) = 0A = C.

B. Lý thuyết Công thức lượng giác

1. Công thức cộng

cos (a – b) = cosa cosb + sina sinb

cos (a + b) = cosa cosb – sina sinb

sin (a – b) = sina cosb – cosa sinb

sin (a + b) = sina cosb + cosa sinb

tan (a-b) = tanatanb1+tanatanb

tan (a+b) = tana+tanb1-tanatanb

(giả thiết các biểu thức đều có nghĩa).

Ví dụ: Không dùng máy tính, hãy tính sinCông thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức và tan 15°.

Hướng dẫn giải

Ta có

sin Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức = -sin7π6 = -sinCông thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức

= -sinπcosπ6 - cosπsinπ6 = -0.32 - (-1).12 = 12.

Ta có

tan15o = tan(60o - 45o) = tan60°tan45°1+tan60°.tan45°

=311+3.1=313+1=23

2. Công thức nhân đôi

sin2a = 2sina cosa

cos2a = cos2a – sin2a = 2cos2 – 1 = 1 – 2sin2a

tan2a = 2tana1tan2a.

Chú ý: Từ công thức nhân đôi suy ra công thức hạ bậc:

cos2a=1+cos2a2

sin2a=1cos2a2.

Ví dụ: Biết sinα = 25 và 0 < α < π2 . Tính sin2α ; cos2α và tan2α.

Hướng dẫn giải

Vì 0 < α < π2 nên cosα > 0.

Ta có:

sin2α + cos2α = 1 ⇒ cos2α = 1 – sin2α = 1-Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức= 2125

⇒ cosα = 215.

Ta có: sin2α = 2sinα cosα = 2.25.215=42125

cos2α = 1 – 2sin2α = 1 - 2.Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức= 1725

tanα=sinαcosα=22121

⇒ tan2α=2tanα1tan2α=Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức=42117.

3. Công thức biến đổi tích thành tổng

cosacosb = 12[cos(a-b) + cos(a+b)]

sinasinb = 12[cos(a-b) - cos(a+b)]

sinacosb = 12[sin(a-b) + sin(a+b)].

Ví dụ: Tính giá trị của biểu thức

a) A = sin7π12cos5π12;

b) B = sinπ12sin7π12.

Hướng dẫn giải

a) Ta có:

Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức

Vậy A = 14.

b) Ta có:

Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức

Vậy B = 14 .

4. Công thức biến đổi tổng thành tích

cosu + cosv = 2cosu+v2cosu-v2

cosu - cosv = -2sinu+v2sinu-v2

sinu + sinv = 2sinu+v2cosu-v2

sinu - sinv = 2cosu+v2sinu-v2.

Ví dụ: ChoA = cosπ17.cos4π17 và B = cos3π17 + cos5π17. Không dùng máy tính, tính giá trị của biểu thức AB.

Hướng dẫn giải

Ta có:

B = cos3π17 + cos5π17 = 2.cos3π17+5π172.cos3π175π172

= 2.cos4π17.cosCông thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức = 2cos4π17.cosπ17.

Suy ra AB=cosπ17.cos4π17cos3π17+cos5π17=cosπ17.cos4π172cos4π17.cosπ17=12 .

Video bài giảng Toán 11 Bài 2: Công thức lượng giác - Kết nối tri thức

Đánh giá

5

1 đánh giá

1