Sách bài tập Toán 8 (Kết nối tri thức) Bài tập cuối chương 4

2.9 K

Với giải sách bài tập Toán 8 Bài tập cuối chương 4 sách Kết nối tri thức hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán lớp 8 Bài tập cuối chương 4

A. Câu hỏi (Trắc nghiệm)

Giải SBT Toán 8 trang 53

Câu 1 trang 53 sách bài tập Toán 8 Tập 1: Cho tam giác ABC có BC = 13 cm. E và F lần lượt là trung điểm của AB, AC. Độ dài EF bằng:

A. 13 cm.

B. 26 cm.

C. 6,5 cm.

D. 3 cm.

Lời giải:

Đáp án đúng là: C

Cho tam giác ABC có BC = 13 cm. E và F lần lượt là trung điểm của AB, AC

Trong ∆ABC có E và F lần lượt là trung điểm của AB, AC nên EF là đường trung bình của ∆ABC.

Suy ra MN=12BC=1213=6,5(cm) (tính chất đường trung bình của tam giác).

Câu 2 trang 53 sách bài tập Toán 8 Tập 1: Độ dài x trong Hình 5.13 là

Độ dài x trong Hình 5.13 trang 53 sách bài tập Toán 8 Tập 1

A. 20.

B. 50.

C. 12.

D. 30.

Lời giải:

Đáp án đúng là: A

Ta có ADE^=ABC^, mà hai góc này ở vị trí đồng vị nên DE // BC

Trong ∆ABC có DE // BC, theo Định lí Thalès ta có: ADDB=AEEC

Hay 1218=AE30 nên AE=123018=20

Vậy x = AE = 20

Câu 3 trang 53 sách bài tập Toán 8 Tập 1: Cho tam giác ABC cân tại B. Hai trung tuyến AM, BN cắt nhau tại G. Gọi I và K lần lượt là trung điểm của GB, GC. Khẳng định nào đúng?

A. MN=12AC.

B. BC=12IK.

C. MN > IK.

D. MN = IK.

Lời giải:

Đáp án đúng là: D

Cho tam giác ABC cân tại B. Hai trung tuyến AM, BN cắt nhau tại G

Trong ∆ABC có M là trung điểm của BC, N là trung điểm của AC nên MN là đường trung bình của ∆ABC

Suy ra MN=12AB (tính chất đường trung bình trong tam giác). (1)

Trong ∆BGC có I là trung điểm của BG, K là trung điểm của BC nên IK là đường trung bình của ∆BGC

Suy ra IK=12BC (tính chất đường trung bình trong tam giác). (2)

Mà tam giác ABC cân tại B nên BA = BC (3)

Từ (1), (2), (3) suy ra MN = IK.

Câu 4 trang 53 sách bài tập Toán 8 Tập 1: Cho hình thang ABCD (AB // DC), O là giao điểm của AC và BD. Xét các khẳng định sau:

1     OAOC=ODOB;

2     OAOD=OBOC;

3     AOAC=BOBD.

Số khẳng định đúng là:

A. 0.

B. 1.

C. 2.

D. 3.

Lời giải:

Đáp án đúng là: C

Cho hình thang ABCD (AB // DC), O là giao điểm của AC và BD

Qua O kẻ OM // AB // CD (M ∈ AD).

Xét DADC có OM // CD, theo định lí Thalès ta có OAOC=MAMD;AOAC=AMAD

Xét DABD có OM // AB, theo định lí Thalès ta có OBOD=MAMD;BOBD=AMAD

Suy ra OAOC=OBOD=MAMD   * và AOAC=BOBD=AMAD

Do đó khẳng định (1) là sai và khẳng định (3) là đúng.

Từ (*) suy ra OA.OD = OB.OC. Do đó khẳng định (2) đúng.

Vậy có 2 khẳng định đúng.

Câu 5 trang 53 sách bài tập Toán 8 Tập 1: Cho Hình 5.14, biết DE // AC. Độ dài x là

Cho Hình 5.14, biết DE // AC. Độ dài x trang 53 sách bài tập Toán 8 Tập 1

A. 5.

B. 7.

C. 6,5.

D. 6,25.

Lời giải:

Đáp án đúng là: D

Xét ∆ABC có DE // AC, theo Định lí Thalès ta có BDDA=BEEC

Hay 52=BE2,5, suy ra BE=52,52=6,25.

Vậy x = 6,25.

Giải SBT Toán 8 trang 54

Câu 6 trang 54 sách bài tập Toán 8 Tập 1: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Biết AG = 4 cm, độ dài của EI, DK là

A. EI = DK = 3 cm.

B. El = 3 cm; DK = 2 cm.

C. EI = DK = 2 cm.

D. EI = 1 cm; DK = 2 cm.

Lời giải:

Đáp án đúng là: C

Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G

Vì BD, CE là các đường trung tuyến của ∆ABC nên D là trung điểm của AC, E là trung điểm của AB.

• Trong ∆ABG có: E là trung điểm của AB, I là trung điểm của GB nên EI là đường trung bình của ∆ABG

Suy ra EI=12AG (tính chất đường trung bình trong tam giác)

Do đó EI=124=2 (cm).

• Trong ∆ACG có: D là trung điểm của AC, K là trung điểm của GC nên DK là đường trung bình của ∆ACG

Suy ra DK=12AG (tính chất đường trung bình trong tam giác)

Do đó DK=124=2 (cm).

Vậy EI = DK = 2 cm.

Câu 7 trang 54 sách bài tập Toán 8 Tập 1: Cho Hình 5.15, biết ED ⊥ AB, AC ⊥ AB. Khi đó, x có giá trị là

Cho Hình 5.15, biết ED ⊥ AB, AC ⊥ AB. Khi đó, x có giá trị

Lời giải:

Đáp án đúng là: C

Ta có AB = AD + BD = 3 + 6 = 9

Do ED ⊥ AB, AC ⊥ AB nên DE // AC

Trong ∆ABC có DE // AC nên theo định lí Thalès ta có: BDBA=BEBC

Suy ra BE=BDBCBA=613,59=9 hay 3x = 9

Vậy x = 9 : 3 = 3.

Câu 8 trang 54 sách bài tập Toán 8 Tập 1: Cho ∆ABC. Tia phân giác góc trong của góc A cắt BC tại D. Cho AB = 6, AC = x, BD = 9, BC = 21. Độ dài x bằng

A. 4.

B. 6.

C. 12.

D. 14.

Lời giải:

Cho ∆ABC. Tia phân giác góc trong của góc A cắt BC tại D

Ta có: BC = BD + DC nên DC = BC ‒ BD = 21 ‒ 9 = 12.

Trong ∆ABC, AD là phân giác của BAC^ nên ABAC=DBDC (tính chất đường phân giác của tam giác)

Hay 6x=912, suy ra x=6129=8.

Vậy không có phương án nào đúng do x = 8.

Câu 9 trang 54 sách bài tập Toán 8 Tập 1: Cho tam giác ABC có AD là tia phân giác của góc BAC. Biết AB = 3 cm, BD = 4 cm, CD = 6 cm. Độ dài AC bằng

A. 4 cm.

B. 5 cm.

C. 6 cm.

D. 4,5 cm.

Lời giải:

Đáp án đúng là: D

Cho tam giác ABC có AD là tia phân giác của góc BAC

Trong ∆ABC có AD là phân giác của góc A nên ABAC=DBDC(tính chất đường phân giác của tam giác)

Hay 3AC=46, suy ra AC=364=4,5(cm).

Câu 10 trang 54 sách bài tập Toán 8 Tập 1: Cho ∆ABC đều, cạnh 3 cm; M, N lần lượt là trung điểm của AB và AC. Chu vi của tứ giác MNCB bằng

A. 8 cm.

B. 7,5 cm.

C. 6 cm.

D. 7 cm.

Lời giải:

Đáp án đúng là: B

Cho ∆ABC đều, cạnh 3 cm M, N lần lượt là trung điểm của AB và AC

Trong ∆ABC có M, N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của ∆ABC

Suy ra MN=12BC (tính chất đường trung bình của tam giác)

Hay MN=123=1,5(cm)

Do ∆ABC đều nên AB = AC

Lại có M, N lần lượt là trung điểm của AB và AC nên BM=12AB=12AC=CN

Hay BM=CN=123=1,5 (cm).

Vậy chu vi của tứ giác BMNC là:

BM + MN + NC + BC = 1,5 + 1,5 + 1,5 + 3 = 7,5 (cm).

Câu 11 trang 54 sách bài tập Toán 8 Tập 1: Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Gọi H, I, K lần lượt là trung điểm của AB, BC, AC. Chu vi của tứ giác AHIK bằng

A. 7 cm.

B. 14 cm.

C. 24 cm.

D. 12 cm.

Lời giải:

Đáp án đúng là: B

Cho tam giác ABC có AB = 6 cm AC = 8 cm BC = 10 cm

Ta có: BC2 = 102 = 100, AB2 + BC2 = 62 + 82 = 36 + 64 = 100

Suy ra BC2 = AB2 + BC2

Do đó, ∆ABC vuông tại A (định lý Pythagore đảo).

Trong ∆ABC có:

• H, I lần lượt là trung điểm của AB và BC nên HI là đường trung bình của ∆ABC;

Suy ra HI // AC và HI=12AC(tính chất đường trung bình trong tam giác)

Hay HI=128=4(cm).

• I, K lần lượt là trung điểm của BC và AC nên IK là đường trung bình của ∆ABC

Suy ra IK // AB và IK=12AB(tính chất đường trung bình trong tam giác)

Hay IK=126=3(cm).

Ta có ∆ABC vuông tại A nên AB ⊥ AC, mà HI // AC nên AB ⊥ HI

Lại có IK // AB nên HI ⊥ IK tại I

Tứ giác AHIK có: HAK^=IHA^=IKA^=90° nên AHIK là hình chữ nhật.

Chu vi của tứ giác AHIK bằng: 2.(IH + IK) = 2.(4 + 3) = 14 (cm).

Câu 12 trang 54 sách bài tập Toán 8 Tập 1: Cho hình thoi ABCD có M là trung điểm AD, đường chéo AC cắt BM tại điểm E. (H.5.16)

Cho hình thoi ABCD có M là trung điểm AD, đường chéo AC cắt BM tại điểm E

Tỉ số EMEB bằng

A. 13.

B. 2.

C. 12.

D. 23.

Lời giải:

Đáp án đúng là: C

Do ABCD là hình thoi nên AC là phân giác của góc A

Trong ∆ABM có AE là phân giác của góc BAM^ nên EMEB=AMAB (tính chất đường phân giác trong tam giác)

Mà M là trung điểm của AD nên AM=12AD=12AB (do ABCD là hình thoi nên AB = AD)

Suy ra EMEB=12ABAB=12.

B. Bài tập

Giải SBT Toán 8 trang 55

Bài 4.15 trang 55 sách bài tập Toán 8 Tập 1: Cho tam giác ABC, điểm I nằm trong tam giác. Lấy điểm D trên IA, qua D kẻ đường thẳng song song với AB, cắt IB tại E. Qua E kẻ đường thẳng song song với BC, cắt IC tại F. Chứng minh rằng: DF // AC.

Lời giải:

Cho tam giác ABC điểm I nằm trong tam giác. Lấy điểm D trên IA

Trong ∆AID có DE // AB suy ra IDIA=IEIB(định lí Thalès)

Trong ∆IBC có EF // BC suy ra IEIB=IFIC(định lí Thalès).

Suy ra IDIA=IFIC

Trong ∆AIC có IDIA=IFIC nên DF // AC (định lí Thalès đảo).

Bài 4.16 trang 55 sách bài tập Toán 8 Tập 1: Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD và CE. Chứng minh MI = IK = KN.

Lời giải:

Cho tam giác ABC, các đường trung tuyến BD CE. Gọi M N theo thứ tự là trung điểm của BE CD

Trong ∆ABC có các đường trung tuyến BD, CE nên D là trung điểm của AC, E là trung điểm của AB nên ED là đường trung bình của ∆ABC

Suy ra ED=12BC và ED // BC (tính chất đường trung bình của tam giác)

Ta có: E là trung điểm của AB nên AE=EB=12AB

Mà M là trung điểm của EB nên EM=MB=12EB=14AB hay MBAB=14

Tương tự, ta cũng có NC=14AC hay NCAC=14

Suy ra MBAB=NCAC=14

Xét DABC có MBAB=NCAC nên MN // BC (định lí Thalès đảo)

Lại có ED // BC nên ED // MN // BC.

Xét DBDE có M là trung điểm của EB và MI // ED (do ED // MN)

Suy ra I là trung điểm của BD hay IB = ID

Khi đó MI là đường trung bình của DBDE nên MI=12ED.

Tương tự, trong DCDE ta cũng có KN=12ED, trong DBCE có MK=12BC.

Ta có IK=MKMI=12BC12ED=ED12ED=12ED.

Do đó MI=IK=KN=12ED.

Bài 4.17 trang 55 sách bài tập Toán 8 Tập 1: Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh DE // BC.

Lời giải:

Cho tam giác ABC cân tại A, các đường phân giác BD CE

Trong ∆ABC có BD là phân giác của ABC^ nên DADC=BABC (tính chất đường phân giác của tam giác). (1)

Trong ∆ABC có CE là phân giác của ACB^ nên EAEB=CACB(tính chất đường phân giác trong tam giác). (2)

Mà ∆ABC cân tại A nên AB = AC  (3)

Từ (1), (2), (3), suy ra: DADC=EAEB.

Xét DABC có DADC=EAEB, suy ra ED // BC (định lí Thales đảo).

Bài 4.18 trang 55 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD, điểm E thuộc cạnh AB (E khác A và B), điểm F thuộc cạnh AD (F khác A và D). Đường thẳng qua D song song với EF cắt AC tại I. Đường thẳng qua B song song với EF cắt AC tại K.

a) Chứng minh rằng: AI = CK.

b) Gọi N là giao điểm của EF và AC. Chứng minh rằng: ABAE+ADAF=ACAN.

Lời giải:

Cho hình bình hành ABCD, điểm E thuộc cạnh AB E khác A và B

a) Ta có DI // EF và BK // EF nên EF // DI // BK

Do DI // BK nên CID^=AKB^(hai góc so le trong)

Mà AID^+CID^=180°;  CKB^+AKB^=180°

Suy ra AID^=CKB^(1)

Do ABCD là hình bình hành nên AD = BC và AD // BC

Suy ra DAC^=BCA^(so le trong) hay DAI^=BCK^(2)

Xét DADI có AID^+DAI^+ADI^=180°(3)

Xét DCBK có CKB^+BCK^+CBK^=180°(4)

Từ (1), (2), (3) và (4) suy ra ADI^=CBK^

Xét DADI và DCBK có:

(cmt); AD = BC (cmt); (cmt)

Do đó DADI = DCBK (g.c.g)

Suy ra AI = CK (hai cạnh tương ứng).

b) Trong ∆ABK có NE // BK nên ABAE=AKAN(định lí Thalès).

Trong ∆ADI có FN // DI nên ADAF=AIAN(định lí Thalès),

Mà AI = CK (câu a) nên ADAF=CKAN

Suy ra ABAE+ADAF=AKAN+CKAN=AK+CKAN=ACAN

Bài 4.19 trang 55 sách bài tập Toán 8 Tập 1: Cho góc xOy nhọn. Trên cạnh Ox lấy điểm N, trên cạnh Oy lấy điểm M. Gọi I là một điểm trên đoạn thẳng MN. Qua I kẻ đường thẳng song song với Ox cắt Oy tại A (A khác M và N) và đường thẳng song song với Oy cắt Ox ở B. Chứng minh rằng: MAMO+NBNO=1.

Lời giải:

Cho góc xOy nhọn. Trên cạnh Ox lấy điểm N trên cạnh Oy lấy điểm M

Xét ∆OMN có AI // ON nên MAMO=MIMN(định lí Thalès);

Và IB // MO nên NBNO=NINM(định lí Thalès).

Suy ra MAMO+NBNO=MIMN+NINM=MI+NIMN=MNMN=1.

Bài 4.20 trang 55 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD, AC cắt BD tại O. Đường phân giác góc A cắt BD tại M, đường phân giác D cắt AC tại N. Chứng minh MN // AD.

Lời giải:

Cho hình bình hành ABCD AC cắt BD tại O. Đường phân giác góc A cắt BD tại M

Trong ∆ABD có: AM là phân giác của góc BAD^ nên ABAD=MBMD(tính chất đường phân giác trong tam giác)

Tương tự: trong ∆ADC có DN là phân giác góc ADC^ nên DCDA=NCNA

Mà AB = DC (do ABCD là hình bình hành) suy ra MBMD=NCNA.

Từ đó, ta có: MBMD+1=NCNA+1 hay MB+MDMD=NC+NANA 

Suy ra BDMD=ACNA(1)

Mà ABCD là hình bình hành nên 2 đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường, suy ra BD = 2DO, AC = 2AO (2)

Từ (1) và (2) suy ra 2DODM=2AOAN hay DODM=AOAN

Xét DOAD có DODM=AOAN nên MN // AD (định lí Thalès đảo).

Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Bài 17: Tính chất đường phân giác của tam giác

Bài tập cuối chương 4

Bài 18: Thu thập và phân loại dữ liệu

Bài 19: Biểu diễn dữ liệu bằng bảng, biểu đồ

Bài 20: Phân tích số liệu thống kê dựa vào biểu đồ

Đánh giá

0

0 đánh giá