Với lời giải SBT Toán 8 trang 55 Tập 1 Bài tập cuối chương 4 sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:
Giải SBT Toán 8 Bài tập cuối chương 4
Bài 4.15 trang 55 sách bài tập Toán 8 Tập 1: Cho tam giác ABC, điểm I nằm trong tam giác. Lấy điểm D trên IA, qua D kẻ đường thẳng song song với AB, cắt IB tại E. Qua E kẻ đường thẳng song song với BC, cắt IC tại F. Chứng minh rằng: DF // AC.
Lời giải:
Trong ∆AID có DE // AB suy ra (định lí Thalès)
Trong ∆IBC có EF // BC suy ra (định lí Thalès).
Suy ra
Trong ∆AIC có nên DF // AC (định lí Thalès đảo).
Bài 4.16 trang 55 sách bài tập Toán 8 Tập 1: Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD và CE. Chứng minh MI = IK = KN.
Lời giải:
Trong ∆ABC có các đường trung tuyến BD, CE nên D là trung điểm của AC, E là trung điểm của AB nên ED là đường trung bình của ∆ABC
Suy ra và ED // BC (tính chất đường trung bình của tam giác)
Ta có: E là trung điểm của AB nên
Mà M là trung điểm của EB nên hay
Tương tự, ta cũng có hay
Suy ra
Xét DABC có nên MN // BC (định lí Thalès đảo)
Lại có ED // BC nên ED // MN // BC.
Xét DBDE có M là trung điểm của EB và MI // ED (do ED // MN)
Suy ra I là trung điểm của BD hay IB = ID
Khi đó MI là đường trung bình của DBDE nên .
Tương tự, trong DCDE ta cũng có trong DBCE có .
Ta có .
Do đó .
Bài 4.17 trang 55 sách bài tập Toán 8 Tập 1: Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh DE // BC.
Lời giải:
Trong ∆ABC có BD là phân giác của nên (tính chất đường phân giác của tam giác). (1)
Trong ∆ABC có CE là phân giác của nên (tính chất đường phân giác trong tam giác). (2)
Mà ∆ABC cân tại A nên AB = AC (3)
Từ (1), (2), (3), suy ra: .
Xét DABC có , suy ra ED // BC (định lí Thales đảo).
Bài 4.18 trang 55 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD, điểm E thuộc cạnh AB (E khác A và B), điểm F thuộc cạnh AD (F khác A và D). Đường thẳng qua D song song với EF cắt AC tại I. Đường thẳng qua B song song với EF cắt AC tại K.
a) Chứng minh rằng: AI = CK.
b) Gọi N là giao điểm của EF và AC. Chứng minh rằng: .
Lời giải:
a) Ta có DI // EF và BK // EF nên EF // DI // BK
Do DI // BK nên (hai góc so le trong)
Mà
Suy ra (1)
Do ABCD là hình bình hành nên AD = BC và AD // BC
Suy ra (so le trong) hay (2)
Xét DADI có (3)
Xét DCBK có (4)
Từ (1), (2), (3) và (4) suy ra
Xét DADI và DCBK có:
(cmt); AD = BC (cmt); (cmt)
Do đó DADI = DCBK (g.c.g)
Suy ra AI = CK (hai cạnh tương ứng).
b) Trong ∆ABK có NE // BK nên (định lí Thalès).
Trong ∆ADI có FN // DI nên (định lí Thalès),
Mà AI = CK (câu a) nên
Suy ra
Bài 4.19 trang 55 sách bài tập Toán 8 Tập 1: Cho góc xOy nhọn. Trên cạnh Ox lấy điểm N, trên cạnh Oy lấy điểm M. Gọi I là một điểm trên đoạn thẳng MN. Qua I kẻ đường thẳng song song với Ox cắt Oy tại A (A khác M và N) và đường thẳng song song với Oy cắt Ox ở B. Chứng minh rằng:
Lời giải:
Xét ∆OMN có AI // ON nên (định lí Thalès);
Và IB // MO nên (định lí Thalès).
Suy ra .
Bài 4.20 trang 55 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD, AC cắt BD tại O. Đường phân giác góc A cắt BD tại M, đường phân giác D cắt AC tại N. Chứng minh MN // AD.
Lời giải:
Trong ∆ABD có: AM là phân giác của góc nên (tính chất đường phân giác trong tam giác)
Tương tự: trong ∆ADC có DN là phân giác góc nên
Mà AB = DC (do ABCD là hình bình hành) suy ra .
Từ đó, ta có: hay
Suy ra (1)
Mà ABCD là hình bình hành nên 2 đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường, suy ra BD = 2DO, AC = 2AO (2)
Từ (1) và (2) suy ra hay
Xét DOAD có nên MN // AD (định lí Thalès đảo).
Xem thêm lời giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Câu 1 trang 53 sách bài tập Toán 8 Tập 1: Cho tam giác ABC có BC = 13 cm. E và F lần lượt là trung điểm của AB, AC. Độ dài EF bằng:....
Câu 2 trang 53 sách bài tập Toán 8 Tập 1: Độ dài x trong Hình 5.13 là.....
Câu 3 trang 53 sách bài tập Toán 8 Tập 1: Cho tam giác ABC cân tại B. Hai trung tuyến AM, BN cắt nhau tại G. Gọi I và K lần lượt là trung điểm của GB, GC. Khẳng định nào đúng?....
Câu 4 trang 53 sách bài tập Toán 8 Tập 1: Cho hình thang ABCD (AB // DC), O là giao điểm của AC và BD. Xét các khẳng định sau:....
Câu 5 trang 53 sách bài tập Toán 8 Tập 1: Cho Hình 5.14, biết DE // AC. Độ dài x là....
Câu 6 trang 54 sách bài tập Toán 8 Tập 1: Cho tam giác A.BC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Biết AG = 4 cm, độ dài của EI, DK là....
Câu 7 trang 54 sách bài tập Toán 8 Tập 1: Cho Hình 5.15, biết ED ⊥ AB, AC ⊥ AB. Khi đó, x có giá trị l....
Câu 8 trang 54 sách bài tập Toán 8 Tập 1: Cho ∆ABC. Tia phân giác góc trong của góc A cắt BC tại D. Cho AB = 6, AC = x, BD = 9, BC = 21. Độ dài x bằng....
Câu 9 trang 54 sách bài tập Toán 8 Tập 1: Cho tam giác ABC có AD là tia phân giác của góc BAC. Biết AB = 3 cm, BD = 4 cm, CD = 6 cm. Độ dài AC bằng....
Câu 10 trang 54 sách bài tập Toán 8 Tập 1: Cho ∆ABC đều, cạnh 3 cm; M, N lần lượt là trung điểm của AB và AC. Chu vi của tứ giác MNCB bằng....
Câu 11 trang 54 sách bài tập Toán 8 Tập 1: Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Gọi H, I, K lần lượt là trung điểm của AB, BC, AC. Chu vi của tứ giác AHIK bằng.....
Câu 12 trang 54 sách bài tập Toán 8 Tập 1: Cho hình thoi ABCD có M là trung điểm AD, đường chéo AC cắt BM tại điểm E. (H.5.16).....
Bài 4.15 trang 55 sách bài tập Toán 8 Tập 1: Cho tam giác ABC, điểm I nằm trong tam giác. Lấy điểm D trên IA, qua D kẻ đường thẳng song song với AB, cắt IB tại E. Qua E kẻ đường thẳng song song với BC, cắt IC tại F. Chứng minh rằng: DF // AC......
Bài 4.16 trang 55 sách bài tập Toán 8 Tập 1: Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD và CE. Chứng minh MI = IK = KN.....
Bài 4.17 trang 55 sách bài tập Toán 8 Tập 1: Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh DE // BC.....
Bài 4.18 trang 55 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD, điểm E thuộc cạnh AB (E khác A và B), điểm F thuộc cạnh AD (F khác A và D). Đường thẳng qua D song song với EF cắt AC tại I. Đường thẳng qua B song song với EF cắt AC tại K.....
Bài 4.19 trang 55 sách bài tập Toán 8 Tập 1: Cho góc xOy nhọn. Trên cạnh Ox lấy điểm N, trên cạnh Oy lấy điểm M. Gọi I là một điểm trên đoạn thẳng MN. Qua I kẻ đường thẳng song song với Ox cắt Oy tại A (A khác M và N) và đường thẳng song song với Oy cắt Ox ở B. Chứng minh rằng: .....
Bài 4.20 trang 55 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD, AC cắt BD tại O. Đường phân giác góc A cắt BD tại M, đường phân giác D cắt AC tại N. Chứng minh MN // AD......
Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Bài 17: Tính chất đường phân giác của tam giác
Bài tập cuối chương 4
Bài 18: Thu thập và phân loại dữ liệu
Bài 19: Biểu diễn dữ liệu bằng bảng, biểu đồ
Bài 20: Phân tích số liệu thống kê dựa vào biểu đồ