Giải SBT Toán 8 trang 54 Tập 1 Kết nối tri thức

622

Với lời giải SBT Toán 8 trang 54 Tập 1 Bài tập cuối chương 4 sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài tập cuối chương 4

Câu 6 trang 54 sách bài tập Toán 8 Tập 1: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Biết AG = 4 cm, độ dài của EI, DK là

A. EI = DK = 3 cm.

B. El = 3 cm; DK = 2 cm.

C. EI = DK = 2 cm.

D. EI = 1 cm; DK = 2 cm.

Lời giải:

Đáp án đúng là: C

Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G

Vì BD, CE là các đường trung tuyến của ∆ABC nên D là trung điểm của AC, E là trung điểm của AB.

• Trong ∆ABG có: E là trung điểm của AB, I là trung điểm của GB nên EI là đường trung bình của ∆ABG

Suy ra EI=12AG (tính chất đường trung bình trong tam giác)

Do đó EI=124=2 (cm).

• Trong ∆ACG có: D là trung điểm của AC, K là trung điểm của GC nên DK là đường trung bình của ∆ACG

Suy ra DK=12AG (tính chất đường trung bình trong tam giác)

Do đó DK=124=2 (cm).

Vậy EI = DK = 2 cm.

Câu 7 trang 54 sách bài tập Toán 8 Tập 1: Cho Hình 5.15, biết ED ⊥ AB, AC ⊥ AB. Khi đó, x có giá trị là

Cho Hình 5.15, biết ED ⊥ AB, AC ⊥ AB. Khi đó, x có giá trị

Lời giải:

Đáp án đúng là: C

Ta có AB = AD + BD = 3 + 6 = 9

Do ED ⊥ AB, AC ⊥ AB nên DE // AC

Trong ∆ABC có DE // AC nên theo định lí Thalès ta có: BDBA=BEBC

Suy ra BE=BDBCBA=613,59=9 hay 3x = 9

Vậy x = 9 : 3 = 3.

Câu 8 trang 54 sách bài tập Toán 8 Tập 1: Cho ∆ABC. Tia phân giác góc trong của góc A cắt BC tại D. Cho AB = 6, AC = x, BD = 9, BC = 21. Độ dài x bằng

A. 4.

B. 6.

C. 12.

D. 14.

Lời giải:

Cho ∆ABC. Tia phân giác góc trong của góc A cắt BC tại D

Ta có: BC = BD + DC nên DC = BC ‒ BD = 21 ‒ 9 = 12.

Trong ∆ABC, AD là phân giác của BAC^ nên ABAC=DBDC (tính chất đường phân giác của tam giác)

Hay 6x=912, suy ra x=6129=8.

Vậy không có phương án nào đúng do x = 8.

Câu 9 trang 54 sách bài tập Toán 8 Tập 1: Cho tam giác ABC có AD là tia phân giác của góc BAC. Biết AB = 3 cm, BD = 4 cm, CD = 6 cm. Độ dài AC bằng

A. 4 cm.

B. 5 cm.

C. 6 cm.

D. 4,5 cm.

Lời giải:

Đáp án đúng là: D

Cho tam giác ABC có AD là tia phân giác của góc BAC

Trong ∆ABC có AD là phân giác của góc A nên ABAC=DBDC(tính chất đường phân giác của tam giác)

Hay 3AC=46, suy ra AC=364=4,5(cm).

Câu 10 trang 54 sách bài tập Toán 8 Tập 1: Cho ∆ABC đều, cạnh 3 cm; M, N lần lượt là trung điểm của AB và AC. Chu vi của tứ giác MNCB bằng

A. 8 cm.

B. 7,5 cm.

C. 6 cm.

D. 7 cm.

Lời giải:

Đáp án đúng là: B

Cho ∆ABC đều, cạnh 3 cm M, N lần lượt là trung điểm của AB và AC

Trong ∆ABC có M, N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của ∆ABC

Suy ra MN=12BC (tính chất đường trung bình của tam giác)

Hay MN=123=1,5(cm)

Do ∆ABC đều nên AB = AC

Lại có M, N lần lượt là trung điểm của AB và AC nên BM=12AB=12AC=CN

Hay BM=CN=123=1,5 (cm).

Vậy chu vi của tứ giác BMNC là:

BM + MN + NC + BC = 1,5 + 1,5 + 1,5 + 3 = 7,5 (cm).

Câu 11 trang 54 sách bài tập Toán 8 Tập 1: Cho tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Gọi H, I, K lần lượt là trung điểm của AB, BC, AC. Chu vi của tứ giác AHIK bằng

A. 7 cm.

B. 14 cm.

C. 24 cm.

D. 12 cm.

Lời giải:

Đáp án đúng là: B

Cho tam giác ABC có AB = 6 cm AC = 8 cm BC = 10 cm

Ta có: BC2 = 102 = 100, AB2 + BC2 = 62 + 82 = 36 + 64 = 100

Suy ra BC2 = AB2 + BC2

Do đó, ∆ABC vuông tại A (định lý Pythagore đảo).

Trong ∆ABC có:

• H, I lần lượt là trung điểm của AB và BC nên HI là đường trung bình của ∆ABC;

Suy ra HI // AC và HI=12AC(tính chất đường trung bình trong tam giác)

Hay HI=128=4(cm).

• I, K lần lượt là trung điểm của BC và AC nên IK là đường trung bình của ∆ABC

Suy ra IK // AB và IK=12AB(tính chất đường trung bình trong tam giác)

Hay IK=126=3(cm).

Ta có ∆ABC vuông tại A nên AB ⊥ AC, mà HI // AC nên AB ⊥ HI

Lại có IK // AB nên HI ⊥ IK tại I

Tứ giác AHIK có: HAK^=IHA^=IKA^=90° nên AHIK là hình chữ nhật.

Chu vi của tứ giác AHIK bằng: 2.(IH + IK) = 2.(4 + 3) = 14 (cm).

Câu 12 trang 54 sách bài tập Toán 8 Tập 1: Cho hình thoi ABCD có M là trung điểm AD, đường chéo AC cắt BM tại điểm E. (H.5.16)

Cho hình thoi ABCD có M là trung điểm AD, đường chéo AC cắt BM tại điểm E

Tỉ số EMEB bằng

A. 13.

B. 2.

C. 12.

D. 23.

Lời giải:

Đáp án đúng là: C

Do ABCD là hình thoi nên AC là phân giác của góc A

Trong ∆ABM có AE là phân giác của góc BAM^ nên EMEB=AMAB (tính chất đường phân giác trong tam giác)

Mà M là trung điểm của AD nên AM=12AD=12AB (do ABCD là hình thoi nên AB = AD)

Suy ra EMEB=12ABAB=12.

Đánh giá

0

0 đánh giá