Giải SBT Toán 7 trang 74 Tập 1 Kết nối tri thức

1.3 K

Với lời giải SBT Toán 7 trang 74 Tập 1 chi tiết trong Ôn tập chương 4 sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Ôn tập chương 4

Bài 4.58 trang 74 SBT Toán 7 Tập 1Cho đường thẳng d đi qua trung điểm M của đoạn thẳng AB và không vuông góc với AB. Kẻ AP, BQ (P  d, Q  d) vuông góc với đường thẳng d (H.4.60). Chứng minh rằng:

a) AP = BQ.

b) ∆APB = ∆BQA.

Sách bài tập Toán 7 Ôn tập chương 4 - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Xét tam giác vuông PAM và tam giác vuông QBM có:

AM = BM (do M là trung điểm của AB)

PMA^=QMB^ (hai góc đối đỉnh)

Do đó, ∆PAM = ∆QBM (cạnh huyền – góc nhọn).

Suy ra AP = BQ.

b) Xét tam giác APB và tam giác BQA có:

AP = BQ (cmt)

PAB^=QBA^ (do ∆PAM = ∆QBM)

AB: cạnh chung

Do đó, ∆APB = ∆BQA (c – g – c).

Bài 4.59 trang 74 SBT Toán 7 Tập 1: Cho Hình 4.61, hãy tính số đo các góc của tam giác ABE.

Sách bài tập Toán 7 Ôn tập chương 4 - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Ta có: AD = AC = CD, do đó tam giác ACD là tam giác đều.

Suy ra ACD^=ADC^=CAD^=60°.

Ta có: ACB^+ACD^=180° (hai góc kề bù)

ACB^=180°ACD^=180°60°=120°.

Tam giác ABC có CB = CA nên tam giác ACB cân tại đỉnh C.

Suy ra ABC^=BAC^.

Ta có: ABC^+BAC^+ACB^=180° (định lí tổng ba góc trong tam giác)

Do đó, 2ABC^=180°ACB^=180°120°=60°.

Suy ra ABC^=60°2=30°.

Do đó, ABC^=BAC^=30°.

Chứng minh tương tự đối với tam giác ADE cân tại đỉnh D, ta cũng có: DEA^=DAE^=30°

Ta có:

BAE^=BAC^+CAD^+DAE^=30°+60°+30°=120°.

Vậy trong tam giác ABE có: ABE^=ABC^=30°AEB^=DEA^=30° và BAE^=120°.

Bài 4.60 trang 74 SBT Toán 7 Tập 1: Cho hình thang cân ABCD có đáy lớn AD và đáy nhỏ BC thỏa mãn AD = 4 cm và AB = BC = CD = 2 cm (H.4.62). Tính các góc của hình thang ABCD.

Sách bài tập Toán 7 Ôn tập chương 4 - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Gọi O là trung điểm của AD.

Khi đó, AO = OD = AD2=42=2 (cm).

Do đó, AB = BC = CD = AO = OD = 2 cm.

Tam giác ABO có AB = BO nên tam giác ABO cân tại đỉnh A.

Suy ra ABO^=AOB^.

Lại có: AD // BC (do ABCD là hình thang cân có AD và BC là đáy)

Suy ra CBO^=AOB^ (hai góc so le trong).

Do đó, ABO^=AOB^=CBO^.

Xét tam giác ABO và tam giác CBO có:

AB = BC (= 2 cm)

ABO^=CBO^ (cmt)

BO: cạnh chung

Do đó, ∆ABO = ∆CBO (c – g – c).

Suy ra CO = AO = 2 cm.

Tam giác COD có CD = OD = OC (= 2 cm). Do đó tam giác COD là tam giác đều.

Suy ra D^=CDO^=60°.

Ta có: D^+BCD^=180° (BC // AD, hai góc ở vị trí trong cùng phía)

Suy ra BCD^=180°D^=180°60°=120°.

Do ABCD là hình thang cân với AD và BC là đáy.

Vậy A^=D^=60° và ABC^=BCD^=120°.

Xem thêm các bài giải sách bài tập Toán 7 Kết nối tri thức hay, chi tiết khác:

Giải SBT Toán 7 trang 71 Tập 1

Giải SBT Toán 7 trang 72 Tập 1

Giải SBT Toán 7 trang 73 Tập 1

Đánh giá

0

0 đánh giá