Sách bài tập Toán 11 Bài 2 (Cánh diều): Giới hạn của hàm số

2.7 K

Với giải sách bài tập Toán 11 Bài 2: Giới hạn của hàm số sách Cánh diều hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Giới hạn của hàm số

Giải SBT Toán 11 trang 74

Bài 12 trang 74 SBT Toán 11 Tập 1Giả sử limxx0fx=L  và limxx0gx=M  (L, M ∈ ℝ). Phát biểu nào sau đây là sai?

 Bài 12 trang 74 SBT Toán 11 Tập 1

Lời giải:

Đáp án đúng là: D

Với limxx0fx=L  và limxx0fxgx=LM  (L, M ∈ ℝ) thì  (nếu M ≠ 0).

Do vậy đáp án D sai vì thiếu điều kiện M ≠ 0.

Bài 13 trang 74 SBT Toán 11 Tập 1Cho hàm số y = f(x) xác định trên khoảng (x0; b). Phát biểu nào sau đây là đúng?

A. Nếu với dãy số (xn) bất kì, x­0 < xn < b và xn → x0, ta có f(xn) → L thì limxx0+fx=L .

B. Nếu với dãy số (xn) bất kì, xn → x0, ta có f(xn) → L thì limxx0+fx=L .

C. Nếu với dãy số (xn) bất kì, x0 < xn < b và xn → L, ta có f(xn) → x0 thì limxx0+fx=L .

D. Nếu với dãy số (xn) bất kì, xn < x0 và xn → x0, ta có f(xn) → L thì limxx0+fx=L .

Lời giải:

Đáp án đúng là: A

Theo lí thuyết, ta có: Cho hàm số y = f(x) xác định trên khoảng (x0; b), nếu với dãy số (xn) bất kì, x­0 < xn < b và xn → x0, ta có f(xn) → L thì limxx0+fx=L .

Giải SBT Toán 11 trang 75

Bài 14 trang 75 SBT Toán 11 Tập 1Với c, k là các hằng số và k nguyên dương thì

A. limx+cxk=0 .

B. limx+cxk=+ .

C. limx+cxk= .

D. limx+cxk=+  hoặc limx+cxk= .

Lời giải:

Đáp án đúng là: A

Với c, k là các hằng số và k nguyên dương, ta luôn có limx+cxk=0 .

Bài 15 trang 75 SBT Toán 11 Tập 1Phát biểu nào sau đây là đúng?

A. Nếu limxx0fx=L  thì limxx0fx=L .  

B. Nếu limxx0fx=L  thì L ≥ 0.  

c. Nếu f(x) ≥ 0 và limxx0fx=L  thì L ≥ 0 và limxx0fx=L .

D. Nếu limxx0fx=L  thì L ≥ 0 và limxx0fx=L .

Lời giải:

Đáp án đúng là: C

Theo lí thuyết ta có: Nếu f(x) ≥ 0 và limxx0fx=L  thì L ≥ 0 và limxx0fx=L .

Bài 16 trang 75 SBT Toán 11 Tập 1Cho hàm số y = f(x) xác định trên khoảng (a ; + ∞). Phát biểu nào sau đây là đúng?

A. Nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L thì limx+fx=L .

B. Nếu với dãy số (xn) bất kì, xn < a và xn → +∞, ta có f(xn) → L thì limx+fx=L .

C. Nếu với dãy số (xn) bất kì, xn > a, ta có f(xn) → L thì limx+fx=L .

D. Nếu với dãy số (xn) bất kì, xn > a và xn → L, ta có f(xn) →+∞ thì limx+fx=L .

Lời giải:

Đáp án đúng là: A

Theo lí thuyết, ta có: Cho hàm số y = f(x) xác định trên khoảng (a ; + ∞), nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L thì limx+fx=L .

Bài 17 trang 75 SBT Toán 11 Tập 1Sử dụng định nghĩa, chứng minh rằng:

a) limx2x3=8 .

b) limx2x24x+2=4 .

Lời giải:

a) Xét hàm số f(x) = x3. Giả sử (xn) là dãy số bất kì, thỏa mãn limxn = – 2.

Ta có limf(xn) = limxn3=23=8 .

Vậy limx2x3=8 .

b) Xét hàm số gx=x24x+2 .

Giả sử (xn) là dãy số bất kì, thỏa mãn xn ≠ – 2 và lim xn = – 2.

Ta có limgxn=limxn24xn+2=limxn2xn+2xn+2=limxn2=4 .

Vậy limx2x24x+2=4 .

Bài 18 trang 75 SBT Toán 11 Tập 1Cho limx3fx=4, chứng minh rằng:

a) limx33fx=12 ;

b) limx3fx4=1 ;

c) limx3fx=2 .

Lời giải:

a) limx33fx=limx33.limx3fx=3.4=12.

b) limx3fx4=limx3fxlimx34=44=1 .

c) limx3fx=limx3fx=4=2 .

Giải SBT Toán 11 trang 76

Bài 19 trang 76 SBT Toán 11 Tập 1Quan sát đồ thị hàm số ở Hình 2 và cho biết các giới hạn sau: limx+fx;limxfx;limx2+fx;limx2fx .

 Quan sát đồ thị hàm số ở Hình 2 và cho biết các giới hạn sau

Lời giải:

Dựa vào đồ thị hàm số, ta có:

limx+fx=1;

limxfx=1;

limx2+fx=;

limx2fx=+.

Bài 20 trang 76 SBT Toán 11 Tập 1Tính các giới hạn sau:

a) limx14x2+3x+1 ;                       b) limx14x+1x2x+3 ;

c) limx23x2+5x+4 ;                          d) limx3+4x2x2+3 ;

e) limx2+3x2 ;                                    g) limx2+5x+2 .

Lời giải:

a) limx14x2+3x+1 =limx14x2+limx13x+limx11  = – 4 – 3 + 1 = – 6.            

b) limx14x+1x2x+3 =limx14x+1limx1x2x+3=limx14x+limx11limx1x2limx1x+limx13=4+111+3=55=1 .

c) Vì limx23x2+5x+4 =limx23x2+limx25x+limx24= 3.22+5.2+4=26 .

Do đó, limx23x2+5x+4 =26.                

d) Vì limx3+4x=limx3+limx4x=3+0=3

 Tính các giới hạn sau trang 76 SBT Toán 11 .

Do đó, limx3+4x2x2+3=0 .

e) Vì limx2+3=3<0 ; limx2+x2=0  và x – 2 > 0 với mọi x > 2.

Do đó, limx2+3x2= .                              

g) Vì limx2+5=5>0 ; limx2+x+2=0  và x + 2 > 0 với mọi x > – 2.

Do đó, limx2+5x+2=+ .

Bài 21 trang 76 SBT Toán 11 Tập 1Tính các giới hạn sau:

a) limx5x+23x+1 ;                                 b) limx2x+33x2+2x+5 ;

c) limx+9x2+3x+1 ;                               d) limx9x2+3x+1 ;

e) limx12x28x+6x21 ;                               g) limx3x2+2x+15x2+4x+3 .

Lời giải:

a) limx5x+23x+1=limx5+2x3+1x=53 .                      

b) limx2x+33x2+2x+5 =limx2x+3x23+2x+5x2=03=0 .

c)  Tính các giới hạn sau trang 76 SBT Toán 11

d)  Tính các giới hạn sau trang 76 SBT Toán 11

=limxx.9+3x2x1+1x=limx9+3x21+1x=91=3.         

e) limx12x28x+6x21 =limx12x6x1x+1x1=limx12x6x+1=2.                          

g) limx3x2+2x+15x2+4x+3 =limx35xx+3x+1x+3=limx35xx+1=4.

Bài 22 trang 76 SBT Toán 11 Tập 1Cho limx1fx4x1=2 . Tính:

a) limx1fx ;

b) limx13fx .

Lời giải:

Bài 22 trang 76 SBT Toán 11 Tập 1 

Điều này mâu thuẫn với giả thiết limx1fx4x1=2.

Bài 22 trang 76 SBT Toán 11 Tập 1

b) Ta có limx13fx =limx13.limx1fx=3.4=12 .

Bài 23 trang 76 SBT Toán 11 Tập 1Cho hàm số f(x) thoả mãn limx+fx=2022 . Tính limx+xfxx+1 .   

Lời giải:

Ta có limx+xfxx+1 =limx+fx1+1x=limx+fxlimx+1+1x

=limx+fxlimx+1+limx+1x=20221+0=2022.

Vậy limx+xfxx+1=2022 .

Bài 24 trang 76 SBT Toán 11 Tập 1Cho số thực a và hàm số (x) thoả mãn limxafx= . Chứng minh rằng:

limxafx32fx+1=12.

Lời giải:

Ta có  limxafx32fx+1=limxa13fx2+1fx=limxa13fxlimxa2+1fx

                              =limxa1limxa3fxlimxa2+limxa1fx=limxa1limxa3limxafxlimxa2+limxa1limxafx =102+0=12 .

Vậy limxafx32fx+1=12 .

Bài 25 trang 76 SBT Toán 11 Tập 1Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t2 – t3 (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t1, t2  Vtb=gt2gt1t2t1 . Tính limt10gtg10t10  và cho biết ý nghĩa của kết quả tìm được.

Lời giải:

Ta có g(10) = 45 . 102 – 103.

Khi đó limt10gtg10t10 =limt1045t2t345.102103t10

=limt1045t245.102t3103t10

=limt1045t10t+10t10t2+10t+100t10

=limt10t1045t+10t2+10t+100t10

=limt10t2+35t+350=600.

Vậy limt10gtg10t10  = 600.

Từ kết quả trên, ta thấy tốc độ tăng người bệnh ngay tại thời điểm t = 10 ngày là 600 người/ngày.

Xem thêm các bài giải SBT Toán 11 Cánh diều hay, chi tiết khác:

Bài 1: Giới hạn của dãy số

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Bài 1: Đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song trong không gian

Lý thuyết Giới hạn của hàm số

I. Giới hạn hữu hạn của hàm số tại một điểm

1. Định nghĩa

Cho khoảng K chứa điểm x0và hàm số f(x) xác định trên K hoặc trên K{x0}. Hàm số f(x)có giới hạn là số L khi x dần tới x0 nếu với dãy số (xn)bất kì, xnK{x0} và xnx0, ta cóf(xn)L

Kí hiệu limxx0f(x)=L hay f(x)L, khi xnx0.

2. Phép toán trên giới hạn hữu hạn của hàm số

a, Nếu limxx0f(x)=L và limxx0g(x)=M(L,MR)thì

limxx0[f(x)±g(x)]=L±M

limxx0[f(x).g(x)]=L.M

limxx0[f(x)g(x)]=LM(M0)

b, Nếu f(x)0 với mọi x(a;b){x0} và limxx0f(x)=L thì L0 và limxx0f(x)=L.

3. Giới hạn một phía

- Cho hàm số y=f(x) xác định trên khoảng (a;x0). Số L được gọi là giới hạn bên trái của hàm số y=f(x) khi xx0 nếu với dãy số (xn) bất kì thỏa mãn a<xn<x0 và xnx0 ta có f(xn)L, kí hiệu limxx0f(x)=L.

- Cho hàm số y=f(x) xác định trên khoảng (x0;b). Số L là giới hạn bên của hàm số y=f(x) khi xx0 nếu với dãy số (xn)bất kì thỏa mãn x0<xn<b và xnx0 ta có f(xn)L, kí hiệu limxx0+f(x)=L.

*Nhận xét: limxx0f(x)=Llimxx0f(x)=limxx0+f(x)=L

II. Giới hạn hữu hạn của hàm số tại vô cực

- Cho hàm số y=f(x)xác định trên khoảng (a;+). Ta nói hàm số f(x) có giới hạn là số L khi x+ nếu với dãy số (xn)bất kì xn>a và xn+ta có f(xn)L, kí hiệu limx+f(x)=L hay f(x)L khi x+.

- Cho hàm số y=f(x) xác định trên khoảng (;b). Ta nói hàm số f(x) có giới hạn là số L khi x nếu với dãy số (xn)bất kì xn<b và xnta có f(xn)L, kí hiệu limxf(x)=L hay f(x)L khi x.

* Nhận xét:

- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.

- Với c là hằng số, k là một số nguyên dương ta có:

limx+c=climxc=c,limx+(cxk)=0,limx(cxk)=0.

III. Giới hạn vô cực (một phía) của hàm số tại một điểm

- Cho hàm số y=f(x)xác định trên khoảng (a;+). Ta nói hàm số f(x)có giới hạn + khi xa+ nếu với dãy số (xn) bất kì, xn>a và xnata có f(xn)+.

Kí hiệu limxa+f(x)=+hay f(x)+ khi xa+

- Các giới hạn limxa+f(x)=,limxaf(x)=+,limxaf(x)= được định nghĩa tương tự.

IV. Giới hạn vô cực của hàm số tại vô cực

- Cho hàm số y=f(x) xác định trên khoảng (a;x0). Ta nói hàm số f(x)có giới hạn + khi xx0 về bên trái nếu với dãy số (xn)bất kì, xn>a và xn+ ta có f(xn)+, kí hiệu limx+f(x)=+.

Kí hiệu limx+f(x)=+ hay f(x)+ khi x+.

- Các giới hạn limx+f(x)=,limxf(x)=+,limxf(x)= được định nghĩa tương tự.

* Chú ý:

  • limx+xk=+,kZ+.
  • limxxk=+, k là số nguyên dương chẵn.
  • limxxk=, k là số nguyên dương lẻ.
Đánh giá

0

0 đánh giá