Với giải sách bài tập Toán 8 Bài 3: Hằng đẳng thức đáng nhớ sách Cánh diều hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:
Giải SBT Toán lớp 8 Bài 3: Hằng đẳng thức đáng nhớ
Giải SBT Toán 8 trang 15
a) 9x2 +12x + 4;
b) 121y2 ‒ 110y + 25;
c) 36x2 ‒ 96xy + 64y2.
Lời giải:
a) 9x2 + 12x + 4 = (3x)2 + 2.3x.2 + 22 = (3x + 2)2.
b) 121y2 ‒ 110y + 25 = (11y)2 ‒ 2.11y.2 + 52 = (11y ‒ 5)2.
c) 36x2 ‒ 96xy + 64y2 = (6x)2 ‒ 2.6x.8y + (8y)2 = (6x ‒ 8y)2.
a) 8x3 + 12x2 + 6x + 1;
b) 8x3 ‒ 36x2y + 54xy2 ‒ 27y3.
Lời giải:
a) 8x3 + 12x2 + 6x + 1
= (2x)3 + 3.(2x)2.1 + 3.2x.12 + 13
= (2x + 1)3.
b) 8x3 ‒ 36x2y + 54xy2 ‒ 27y3
= (2x)3 ‒ 3.(2x)2.3y + 3.2x.(3y)3 ‒ (3y)3
= (2x ‒ 3y)3.
Bài 17 trang 15 SBT Toán 8 Tập 1: Rút gọn rồi tính giá trị của mỗi biểu thức:
a) A = (5x + 4)(5x ‒ 4) ‒ (5x + 1)2 + 123 tại x = ‒1;
b) B = (2x + 1)(4x2 ‒ 2x + 1) ‒ 2x(4x2 ‒ 5) ‒ 11 tại ;
c) C = (4x + y)3 ‒ (4x ‒ y)3 ‒ 2y(y2 +48x2) ‒ 22x + 24ytại .
Lời giải:
a) A = (5x + 4)(5x ‒ 4) ‒ (5x + 1)2 + 123
= (5x)2 – 42 – [(5x)2 + 2.5x.1 + 12] + 123
= 25x2 ‒ 16 ‒ 25x2 ‒ 10x ‒ 1 + 123
= (25x2 ‒ 25x2) – 10x + (‒ 16 ‒ 1 + 123)
= ‒10x + 106
Thay vào A, ta được: A = ‒10. (–1) + 106= 10 + 106 = 116.
Vậy giá trị của Atại là A = 116.
b) B = (2x + 1)(4x2 ‒ 2x + 1) ‒ 2x(4x2 ‒ 5) ‒ 11
= 8x3 ‒ 4x2 +2x + 4x2 ‒ 2x + 1 ‒ 8x3 +10x ‒ 11
= 10x ‒ 10.
Thay vào B, ta được: .
Vậy giá trị của Btại là .
c) C = (4x + y)3 ‒ (4x ‒ y)3 ‒ 2y(y2 +48x2) ‒ 22x + 24y
= (4x)3 + 3.(4x)2.y + 3.4x.y2 + y3 ‒ [(4x)3 – 3.(4x)2.y + 3.4x.y2 – y3] ‒ 2y3 ‒ 96x2y ‒ 22x + 24y
= (4x)3 + 3.(4x)2.y + 3.4x.y2 + y3 – (4x)3 + 3.(4x)2.y – 3.4x.y2 + y3 ‒ 2y3 ‒ 96x2y ‒ 22x + 24y
= 3.(4x)2.y + y3+ 3.(4x)2.y + y3‒ 2y3 ‒ 96x2y ‒ 22x + 24y
= (48x2y + 48x2y ‒ 96x2y) + (y3+ y3‒ 2y3) ‒ 22x + 24y
= ‒ 22x + 24y.
Thay vào C, ta được:
Vậy giá trị của C tại là C = –5.
Bài 18 trang 15 SBT Toán 8 Tập 1: Tính nhanh:
a) 2022;
b) 299.301;
c) 953 + 15.952 + 3.95.25 + 53;
d) 9(102 + 10 + 1) + 100(982 + 392 + 22).
Lời giải:
a) 2022 = (200 + 2)2
= 2002 + 2.200.2 + 22
= 40000 + 800 + 4
= 40804.
b) 299.301 = (300 ‒ 1)(300 + 1)
= 3002 ‒ 1 = 90000 ‒ 1
= 89999.
c) 953 + 15.952 + 3.95.25 + 53
= 953 + 3.952.5 + 3.95.52 + 53
= (95 + 5)3
= 1003 = 1000000.
d) 9(102 + 10 + 1) + 100(982 + 392 + 22)
= (10 ‒ 1)(102 + 10 + 1) + 100(982 + 2.98.2 + 22)
= 103 ‒ 1 + 100(98 + 2)2
= 1000 ‒ 1 + 100.1002
= 999 + 1000000
= 1000999.
Bài 19 trang 15 SBT Toán 8 Tập 1: Không tính giá trị của biểu thức, hãy so sánh:
a) M = 2021.2023và N = 20222;
b) P = 3(22 + 1)(24 + 1)(28 + 1) + 2và Q = (22)8.
Lời giải:
a) Ta có:
M = 2021.2023 = (2022 ‒ 1)(2022 + 1) = 20222 ‒ 1
Ta thấy 20222 ‒ 1 < 20222 nên M < N.
b) Ta có:
P = 3(22 + 1)(24 + 1)(28 + 1) + 2
= (22 ‒ 1)(22 + 1)( 24 + 1)(28 + 1) + 2
= (24 ‒ 1)(24 + 1)(28 + 1) + 2
= (28 ‒ 1)(28 + 1) + 2
= 216 ‒ 1 + 2
= 216 + 1
Q = (22)8 = 216
Ta thấy: 216 + 1 > 216
Vậy P > Q.
Bài 20 trang 15 SBT Toán 8 Tập 1: Tìm giá trị nhỏ nhất của mỗi biểu thức sau:
a) A = 4x2 ‒ 4x + 23;
b) B = 25x2 + y2 + 10x ‒ 4y + 2.
Lời giải:
a) Ta có: A = 4x2 ‒ 4x + 23 = (4x2 ‒ 4x + 1) + 22 = (2x ‒ 1)2 + 22.
Mà (2x ‒ 1)2 ≥ 0 với mọi x
⇒(2x ‒ 1)2 + 22 ≥ 22 với mọi x.
Vậy giá trị nhỏ nhất của A là 22 khi 2x ‒ 1 = 0 hay .
b) Ta có: B = 25x2 + y2 + 10x ‒ 4y + 2
= (25x2 + 10x + 1) + (y2 ‒ 4y + 4) ‒ 3
= (5x + 1)2 + (y ‒ 2)2 ‒ 3.
Mà (5x + 1)2 ≥ 0; (y ‒ 2)2 ≥ 0 với mọi x và y
⇒ (5x + 1)2 + (y ‒ 2)2 ‒ 3 ≥ ‒3 với mọi x và y.
Vậy giá trị nhỏ nhất của B là –3 khi và chỉ khi
Bài 21 trang 15 SBT Toán 8 Tập 1: Tìm giá trị lớn nhất của mỗi biểu thức sau:
a) C = ‒(5x ‒ 4)2 + 2023;
b) D = ‒36x2 + 12xy ‒ y2 + 7.
Lời giải:
a) Do(5x ‒ 4)2 ≥ 0 với mọi x
Suy ra ‒(5x ‒ 4)2 ≤ 0 với mọi x nên ‒(5x ‒ 4)2 + 2023 ≤ 2023 với mọi x.
Vậy giá trị lớn nhất của C là 2023 khi 5x ‒ 4 = 0 hay .
b) Ta có: D = ‒36x2 + 12xy ‒ y2 + 7
= ‒(36x2 ‒ 12xy + y2) + 7 = ‒(6x ‒ y)2 + 7
Mà (6x ‒ y)2 ≥ 0 với mọi x, y
Suy ra ‒(6x ‒ y)2 ≤ 0 với mọi x và y
Do đó‒(6x ‒ y)2 + 7 ≤ 7với mọi xvà y.
Vậy giá trị lớn nhất của Dlà 7 khi 6x ‒ y =0
Xem thêm các bài giải SBT Toán lớp 8 Cánh diều hay, chi tiết khác:
Bài 2: Các phép tính với đa thức nhiều biến
Bài 3: Hằng đẳng thức đáng nhớ
Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
Lý thuyết Hằng đẳng thức đáng nhớ
Hằng đẳng thức
Nếu hai biểu thức P và Q nhận giá trị như nhau với mọi giá trị của biến thì ta nói P = Q là một đồng nhất thức hay là một hằng đẳng thức.
Ví dụ: là những hằng đẳng thức.
không phải là những hằng đẳng thức.
1. Bình phương của một tổng là gì?
Ví dụ:
2. Bình phương của một hiệu là gì?
Ví dụ:
3. Hiệu hai bình phương là gì?
Ví dụ:
4. Lập phương của một tổng là gì?
Ví dụ:
5. Lập phương của một hiệu là gì?
Ví dụ:
6. Tổng hai lập phương là gì?
Ví dụ:
7. Hiệu hai lập phương là gì?
Ví dụ: