50 Bài tập Đồ thị hàm số y = ax^2 (a ≠ 0) (có đáp án)- Toán 9

Tải xuống 8 7.1 K 55

Tailieumoi.vn xin giới thiệu Bài tập Toán 9 Chương 4 Bài 2: TĐồ thị hàm số y = ax^2 (a ≠ 0). Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 9. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 4 Bài 2: Đồ thị hàm số y = ax^2 (a ≠ 0). Mời các bạn đón xem:

Bài tập Toán 9 Chương 4 Bài 2: Đồ thị hàm số y = ax^2 (a ≠ 0)

A. Bài tập Đồ thị hàm số y = ax^2 (a ≠ 0)

I. Bài tập trắc nghiệm

Câu 1: Đồ thị hàm số y = 1/3 x2 đi qua điểm nào sau đây?

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B.

Câu 2: Tọa độ giao điểm của đồ thị hàm số y = x2 với đường thẳng y = 4x - 3 là?

A. (-1; 1), (3; 9)

B. (-1; 1), (-3; 9)

C. (1; 1), (3; 9)

D. (1; 1), (-3; 9)

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Do đó tọa độ giao điểm là (1; 1), (3; 9)

Chọn đáp án C.

Câu 3: Số giao điểm của đồ thị hàm số y = 4x2 với đường thẳng y = 4x - 3

A. 1

B. 0

C. 2

D. 3

Phương trình hoành độ giao điểm:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Khi đó phương trình hoành độ giao điểm trên vô nghiệm.

Vậy không có giao điểm nào

Chọn đáp án B.

Câu 4: Trên mặt phẳng tọa độ cho điểm A( 1; 2) thuộc đồ thị hàm số y = ax2 (a ≠ 0).

Hỏi điểm nào thuộc đồ thị hàm số ?

A. M (2; 8)

B. N ( -2; 4)

C. P( - 3; 9)

D. Q( 4; 16)

Vì điểm A(1; 2) thuộc đồ thị hàm số y = ax2 (a ≠ 0) nên:

2 = a.12 ⇒ a = 2

Vây hàm số đã cho là y = 2x2.

Trong các điểm đã cho chỉ có điểm M (2; 8) thuộc đồ thị hàm số .

Chọn đáp án A.

Câu 5: Biết đồ thị hàm số y = ax2 (a ≠ 0) đi qua điểm A(1; a). Hỏi có bao nhiêu giá trị của a thỏa mãn?

A. 1

B.2

C. 0

D. Vô số

Do đồ thị hàm số y = ax2 (a ≠ 0) đi qua điểm A(1; a) nên:

a = a.12 ⇔ a = a ( luôn đúng với mọi a khác 0).

Vậy có vô số giá trị của a thỏa mãn.

Chọn đáp án D.

Câu 6: Cho đồ thị hàm số y = -2x2. Tìm các điểm thuộc đồ thị hàm số đã cho có tung độ - 8.

A. (2; -8)

B. (-2; -8)

C. Cả A và B đúng

D. Tất cả sai

Các điểm thuộc đồ thị hàm số đã cho có tung độ bằng -8 thỏa mãn:

-8 = -2x2 ⇔ x2 = 4 ⇔ x = ±2

Vậy có 2 điểm thuộc đồ thị hàm số đã cho có tung độ bằng -8 là M (-2; - 8) và N(2; -8)

Chọn đáp án C.

Câu 7: Cho y = ax2 (a ≠ 0) đồ thị hàm số . Với giá trị nào của a thì đồ thị của hàm số đã cho nằm phía trên trục hoành.

A. a < 0

B. a > 0

C.

D. a > 2

Đồ thị hàm số y = ax2 (a ≠ 0) là một đường cong đi qua gốc tọa độ và nhận trục tung làm đối xứng.

+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành.

+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành.

Do đó, để đồ thị hàm số đã cho nằm phía trên trục hoành thì a > 0.

Chọn đáp án B.

Câu 8: Cho đồ thị của các hàm số sau:

(1): y = - 2x2      (2): y = x2      (3): y = -3x2      (4): y = -10x2

Hỏi có bao nhiêu đồ thị hàm số nằm phía dưới trục hoành?

A. 1

B. 2

C. 3

D. 4

Đồ thị hàm số y = ax2 (a ≠ 0) là một đường cong đi qua gốc tọa độ và nhận trục tung làm đối xứng.

+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành.

+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành.

Trong đồ thị các hàm số đã cho; các đồ thị nằm phía dưới trục hoành là”

(1): y = -2x2; (3): y = - 3x2 và (4):y = -10x2

Chọn đáp án C.

Câu 9: Cho đồ thị hàm số y = 3x2. Tìm tung độ của điểm thuộc parabol có hoành độ là số nguyên dương nhỏ nhất?

A. 0

B. 1

C. -3

D. 3

Số nguyên dương nhỏ nhất là 1.

Do đó, tung độ của điểm thuộc parabol có hoành độ 1 là: y = 3.12 = 3

Chọn đáp án D.

Câu 10: Cho đồ thị hàm số y = x2 và y = 3x2. Tìm giao điểm của hai đồ thị hàm số đã cho?

A. O(0; 0)

B. A(1; 1)

C. O(0; 0) và A(1; 1)

D. O(0; 0) và B( 1; 3)

Hoành độ giao điểm của hai đồ thị hàm số đã cho là nghiệm phương trình:

x2 = 3x2 ⇔ -2x2 = 0 ⇔ x = 0

Với x = 0 thì y= 02 = 0

Do đó,đồ thị hai hàm số đã cho cắt nhau tại điểm duy nhất là gốc tọa độ O(0; 0).

Chọn đáp án A.

Câu 11: Cho parabol (P): y = (m – 1)x2 và đường thẳng (d): y = 3 – 2x. Tìm m để đường thẳng d cắt (P) tại điểm có tung độ y = 5.

A. m = 5     

B. m = 7     

C. m = 6     

D. m = −6

Thay y = 5 vào phương trình đường thẳng d ta được 5 = 3 – 2x ⇔ x = −1

Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (−1; 5)

Thay x = −1; y = 5 vào hàm số y = (m – 1)x2 ta được:

(m – 1). (−1)2 = 5 ⇔ m – 1 = 5 ⇔ m = 6

Vậy m = 6 là giá trị cần tìm

Đáp án cần chọn là: C

Câu 12: Cho parabol (P): Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án và đường thẳng (d): y = 5x + 4. Tìm m để đường thẳng d cắt (P) tại điểm có tung độ y = 9

A. m = 5     

B. m = 15   

C. m = 6     

D. m = 16

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Thay y = 9 vào phương trình đường thẳng d ta được 9 = 5x + 4 ⇔ x = 1

nên tọa độ giao điểm của đường thẳng d và parabol (P) là 91; 9)

Thay x = 1; y = 9 vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Vậy m = 16 là giá trị cần tìm

Đáp án cần chọn là: D

Câu 13: Cho parabol (P): Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án và đường thẳng (d): y = 2x + 2. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 4. Tìm hoành độ giao điểm còn lại của d và parabol (P)

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Thay y = 4 vào phương trình đường thẳng d ta được 2x + 2 = 4 ⇔ x = 1

Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (1; 4)

Thay x = 1; y = 4 vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Xét phương trình hoành độ giao điểm của d và (P):

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Đáp án cần chọn là: A

Câu 14: Cho parabol (P):Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án và đường thẳng (d): y = 3x – 5. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 1. Tìm m và hoành độ giao điểm còn lại của d và parabol (P)

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Thay y = 1 vào phương trình đường thẳng d ta được 3x – 5 = 1 ⇔ x = 2

Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (2; 1)

Thay x = 2; y = 1 vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Xét phương trình hoành độ giao điểm của d và (P):

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Vậy hoành độ giao điểm còn lại là x = 10

Đáp án cần chọn là: D

Câu 15: Cho đồ thị hàm số y = 2x2 (P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình 2x2 – m – 5 = 0 có hai nghiệm phân biệt.

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

A. m < −5   

B. m > 0     

C. m < 0     

D. m > −5

Ta có 2x2 – m – 5 = 0 (*) ⇔ 2x2 = m + 5

Số nghiệm của phương trình (*) là số giao điểm của parabol (P): y = 2x2 và đường thẳng d: y = m + 5

Để (*) có hai nghiệm phân biệt thì d cắt (P) tại hai điểm phân biệt. Từ đồ thị hàm số ta thấy:

Với m + 5 > 0 ⇔ m > −5 thì d cắt (P) tại hai điểm phân biệt hay phương trình (*) có hai nghiệm phân biệt khi m > −5

Đáp án cần chọn là: D

II. Bài tập tự luận có lời giải

Câu 1: Cho hàm số y = ax2 . Tìm giá trị nhỏ nhất của y khi x đi từ -2017 đến 2018

Lời giải:

Ta thấy rằng hệ số a của đồ thị này dương, nên đồ thị có giá trị nhỏ nhất là y = 0 tại x = 0

Nhận thấy rằng trong khoảng -2017 đến 2018 đi qua hoành độ x = 0

Do đó giá trị nhỏ nhất của hàm số y = ax2 là y(0) = 0

Vậy giá trị nhỏ nhất của y bằng 0 tại x = 0

III. Bài tập vận dụng

Câu 1: Cho hàm số Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án . Tìm giá trị nhỏ nhất của y khi đi từ đến 2.

Câu 2: Trong mặt phẳng tọa độ Oxy , cho Parabol (P): y = 2x2 . Vẽ đồ thị parabol (P)

B. Lý thuyết Đồ thị hàm số y = ax^2 (a ≠ 0)

1. Đồ thị hàm số y = ax2 (a ≠ 0)

Đồ thị của hàm số y = ax2 (a ≠ 0) là một đường cong đi qua gốc tọa độ và nhận trục Oy làm trục đối xứng. Đường cong đó được gọi là một parabol với đỉnh O.

    + Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.

    + Nếu a < 0 thì đồ thị nằm phía dưới trục hoành, O là điểm cao nhất cảu đồ thị.

2. Cách vẽ đồ thị hàm số y = ax2 (a ≠ 0)

Bước 1: Tìm tập xác định của hàm số.

Bước 2: Lập bảng giá trị (thường từ 5 đến 7 giá trị) tương ứng giữa x và y.

Bước 3: Vẽ đồ thị và kết luận.

* Chú ý: vì đồ thị hàm số y =ax2 (a ≠ 0) luôn đi qua gốc tọa độ O và nhận trục Oy làm trục đối xứng nên khi vẽ đồ thị của hàm số này , ta chỉ cần tìm một số điểm bên phải trục Oy rồi lấy các điểm đối xứng với chúng qua Oy.

Xem thêm
50 Bài tập Đồ thị hàm số y = ax^2 (a ≠ 0) (có đáp án)- Toán 9 (trang 1)
Trang 1
50 Bài tập Đồ thị hàm số y = ax^2 (a ≠ 0) (có đáp án)- Toán 9 (trang 2)
Trang 2
50 Bài tập Đồ thị hàm số y = ax^2 (a ≠ 0) (có đáp án)- Toán 9 (trang 3)
Trang 3
50 Bài tập Đồ thị hàm số y = ax^2 (a ≠ 0) (có đáp án)- Toán 9 (trang 4)
Trang 4
50 Bài tập Đồ thị hàm số y = ax^2 (a ≠ 0) (có đáp án)- Toán 9 (trang 5)
Trang 5
50 Bài tập Đồ thị hàm số y = ax^2 (a ≠ 0) (có đáp án)- Toán 9 (trang 6)
Trang 6
50 Bài tập Đồ thị hàm số y = ax^2 (a ≠ 0) (có đáp án)- Toán 9 (trang 7)
Trang 7
50 Bài tập Đồ thị hàm số y = ax^2 (a ≠ 0) (có đáp án)- Toán 9 (trang 8)
Trang 8
Tài liệu có 8 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống