Bài 4.5 trang 77 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

1.7 K

Với giải Bài 4.5 trang 77 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 10: Đường thẳng và mặt phẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 10: Đường thẳng và mặt phẳng trong không gian

Bài 4.5 trang 77 Toán 11 Tập 1: Cho hình chóp tứ giác S.ABCD và lấy một điểm E thuộc cạnh SA của hình chóp (E khác S, A). Trong mặt phẳng (ABCD) vẽ một đường thẳng d cắt các cạnh CB, CD lần lượt tại M, N và cắt các tia AB, AD lần lượt tại P, Q.

a) Xác định giao điểm của mp(E, d) với các cạnh SB, SD của hình chóp.

b) Xác định giao tuyến của mp(E, d) với các mặt của hình chóp.

Lời giải:

Bài 4.5 trang 77 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

a) +) Vì E thuộc cạnh SA nên E thuộc mặt phẳng (SAB). Vì P thuộc đường thẳng AB nên P thuộc mặt phẳng (SAB). Như vậy, các điểm S, A, B, E, P cùng thuộc mặt phẳng (SAB).

Trong tam giác SAB, đường thẳng EP cắt cạnh SB tại một điểm H. Do P thuộc đường thẳng d nên EP nằm trong mp(E, d) và H thuộc EP, do đó H thuộc mp(E, d). Vậy H là giao điểm của đường thẳng SB và mp(E, d).

+) Vì E thuộc cạnh SA nên E thuộc mặt phẳng (SAD). Vì Q thuộc đường thẳng AD nên Q thuộc mặt phẳng (SAD). Như vậy, các điểm S, A, D, E, Q cùng thuộc mặt phẳng (SAD).

Trong tam giác SAD, đường thẳng EQ cắt cạnh SD tại một điểm I. Do Q thuộc đường thẳng d nên EQ nằm trong mp(E, d) và I thuộc EQ, do đó I thuộc mp(E, d). Vậy I là giao điểm của đường thẳng SD và mp(E, d).

b)

+) Đường thẳng d cắt các cạnh CB, CD lần lượt tại M, N, do đó M, N thuộc d, mà d nằm trong mp(E, d) nên đường thẳng MN cũng nằm trong mp(E, d). Ta lại có, M thuộc CB nằm trong mặt phẳng (ABCD) nên M thuộc mặt phẳng (ABCD), tương tự N thuộc CD nằm trong mặt phẳng (ABCD) nên N thuộc mặt phẳng (ABCD), do đó đường thẳng MN nằm trong mặt phẳng (ABCD). Vậy MN là giao tuyến của hai mặt phẳng (ABCD) và mp(E, d).

+) Vì H thuộc SB nằm trong mặt phẳng (SAB) nên H thuộc mặt phẳng (SAB), lại có E thuộc mặt phẳng (SAB), do đó EH nằm trong mặt phẳng (SAB). Vì E thuộc mp(E, d) và H thuộc mp(E, d) nên EH nằm trong mp(E, d). Vậy EH là giao tuyến của hai mặt phẳng (SAB) và mp(E, d).

+) Vì I thuộc SD nằm trong mặt phẳng (SAD) nên I thuộc mặt phẳng (SAD), lại có E thuộc mặt phẳng (SAD), do đó EI nằm trong mặt phẳng (SAD). Vì E thuộc mp(E, d) và I thuộc mp(E, d) nên EI nằm trong mp(E, d). Vậy EI là giao tuyến của hai mặt phẳng (SAD) và mp(E, d).

+) Vì H thuộc SB nên H thuộc mặt phẳng (SBC), vì M thuộc BC nên M thuộc mặt phẳng (SBC), do đó HM nằm trong mặt phẳng (SBC). Lại có M thuộc d nên M thuộc mp(E, d) và H thuộc mp(E, d) nên HM nằm trong mp(E, d). Vậy HM là giao tuyến của hai mặt phẳng (SBC) và mp(E, d).

+) Vì I thuộc SD nên I thuộc mặt phẳng (SCD), vì N thuộc CD nên N thuộc mặt phẳng (SCD), do đó IN nằm trong mặt phẳng (SCD). Lại có N thuộc d nên N thuộc mp(E, d) và I thuộc mp(E, d) nên IN nằm trong mp(E, d). Vậy IN là giao tuyến của hai mặt phẳng (SCD) và mp(E, d).

Sơ đồ tư duy Đường thẳng và mặt phẳng trong không gian.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá