Với giải HĐ 4 trang 73 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 10: Đường thẳng và mặt phẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 10: Đường thẳng và mặt phẳng trong không gian
HĐ4 trang 73 Toán 11 Tập 1: Căng một sợi dây sao cho hai đầu của sợi dây nằm trên mặt bàn. Khi đó, sợi dây có nằm trên mặt bàn hay không?
Lời giải:
Căng một sợi dây sao cho hai đầu của sợi dây nằm trên mặt bàn. Khi đó, sợi dây nằm trên mặt bàn.
Lý thuyết Các tính chất thừa nhận
- Có một và chỉ một đường thẳng đi qua hai điểm phân biệt.
- Có một và chỉ một mặt phẳng đi qua 3 điểm không thẳng hàng.
- Tồn tại 4 điểm không cùng thuộc một mặt phẳng.
- Nếu có một đường thẳng có 2 điểm phân biệt thuộc một mặt phẳng thì tất cả các điểm của đường thẳng đều thuộc mặt phẳng đó.
- Nếu mọi điểm của đường thẳng d đều thuộc mặt phẳng (P) thì ta nói d nằm trong (P) hoặc (P) chứa d. Kí hiệu hoặc .
- Nếu hai mặt phẳng phân biệt có điểm chung thì các điểm chung của hai mặt phẳng là một đường thẳng đi qua điểm chung đó. Đường thẳng đó được gọi là giao tuyến, kí hiệu .
- Trên mỗi mặt phẳng, tất cả các kết quả đã biết trong hình học phẳng đều đúng.
Video bài giảng Toán 11 Bài 10: Đường thẳng và mặt phẳng trong không gian - Kết nối tri thức
Xem thêm các lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Câu hỏi trang 71 Toán 11 Tập 1: Hãy tìm một số hình ảnh của mặt phẳng trong thực tế.....
HĐ1 trang 71 Toán 11 Tập 1: Chấm phạt đền trên sân bóng đá cho ta hình ảnh về một điểm thuộc mặt phẳng. Hãy tìm thêm các ví dụ khác cũng gợi cho ta hình ảnh đó.....
HĐ2 trang 72 Toán 11 Tập 1: Chiếc xà ngang đặt tựa lên hai điểm A, B của trụ nhảy thể hiện hình ảnh của một đường thẳng đi qua hai điểm đó. Có thể tìm được một đường thẳng khác cũng đi qua hai điểm A, B này không?....
Câu hỏi trang 72 Toán 11 Tập 1: Có bao nhiêu đường thẳng đi qua hai điểm trong số ba điểm không thẳng hàng?...
HĐ3 trang 72 Toán 11 Tập 1: Trong Hình 4.4 là một khối rubik có bốn đỉnh và bốn mặt, mỗi mặt là một tam giác....
Câu hỏi trang 72 Toán 11 Tập 1: Có bao nhiêu mặt phẳng đi qua ba điểm thẳng hàng?...
Luyện tập 1 trang 72 Toán 11 Tập 1: Cho tứ giác ABCD. Có bao nhiêu mặt phẳng đi qua ba trong số bốn đỉnh của tứ giác đó?....
Vận dụng 1 trang 72 Toán 11 Tập 1: Hãy giải thích tại sao trong thực tiễn có nhiều đồ vật được thiết kế gồm ba chân như chân đỡ máy ảnh, giá treo tranh, kiềng ba chân treo nổi,......
HĐ4 trang 73 Toán 11 Tập 1: Căng một sợi dây sao cho hai đầu của sợi dây nằm trên mặt bàn. Khi đó, sợi dây có nằm trên mặt bàn hay không?...
Luyện tập 2 trang 73 Toán 11 Tập 1: Trong Ví dụ 2, lấy điểm N thuộc đường thẳng AB sao cho N khác M. Đường thẳng MN có thuộc mặt phẳng (ABC) hay không?....
HĐ5 trang 73 Toán 11 Tập 1: Trong Hình 4.7, mặt nước và thành bể có giao nhau theo đường thẳng hay không?...
Luyện tập 3 trang 74 Toán 11 Tập 1: Trong Ví dụ 3, hãy xác định giao tuyến của hai mặt phẳng (SBM) và (SCN)....
HĐ6 trang 74 Toán 11 Tập 1: Cho đường thẳng d và điểm A không thuộc d. Trên đường thẳng d lấy hai điểm B, C phân biệt (H.4.9). Mặt phẳng (ABC) có chứa điểm A và đường thẳng d hay không? Mặt phẳng (ABC) có chứa hai đường thẳng AB và BC hay không?....
Luyện tập 4 trang 75 Toán 11 Tập 1: Trong Ví dụ 4, vẽ một đường thẳng c cắt cả hai đường thẳng a và b. Xác định giao tuyến của hai mặt phẳng: mp(S, a) và mp(S, c); mp(S, b) và mp(S, c).....
Vận dụng 2 trang 75 Toán 11 Tập 1: Để tránh cho cửa ra vào không bị va đập vào các đồ xung quanh (do mở cửa quá mạnh hoặc do gió to đập cửa), người ta thường sử dụng một phụ kiện là hít cửa nam châm. Hãy giải thích tại sao khi cửa được hút tới vị trí của nam châm thì cánh cửa được giữ cố định....
HĐ7 trang 75 Toán 11 Tập 1: Các hình ảnh dưới đây có đặc điểm chung nào với hình chóp tam giác đều mà em đã học ở lớp 8?....
Luyện tập 5 trang 76 Toán 11 Tập 1: Cho hình chóp S.ABCD. Gọi tên các mặt bên và mặt đáy của hình chóp đó....
HĐ8 trang 76 Toán 11 Tập 1: Trong các hình chóp ở HĐ7, hình chóp nào có ít mặt nhất? Xác định số cạnh và số mặt của hình chóp đó.....
Luyện tập 6 trang 76 Toán 11 Tập 1: Trong Ví dụ 6, xác định giao điểm của đường thẳng DF và mặt phẳng (ABC).....
Bài 4.1 trang 77 Toán 11 Tập 1: Trong không gian, cho hai đường thẳng a, b và mặt phẳng (P). Những mệnh đề nào sau đây là đúng?....
Bài 4.2 trang 77 Toán 11 Tập 1: Cho tam giác ABC và điểm S không thuộc mặt phẳng (ABC). Lấy D, E là các điểm lần lượt thuộc cạnh SA, SB và D, E khác S.....
Bài 4.3 trang 77 Toán 11 Tập 1: Cho mặt phẳng (P) và hai đường thẳng a, b nằm trong (P). Một đường thẳng c cắt hai đường thẳng a và b tại hai điểm phân biệt. Chứng minh rằng đường thẳng c nằm trong mặt phẳng (P)....
Bài 4.4 trang 77 Toán 11 Tập 1: Cho hình chóp tứ giác S.ABCD và M là một điểm thuộc cạnh SC (M khác S, C). Giả sử hai đường thẳng AB và CD cắt nhau tại N. Chứng minh rằng đường thẳng MN là giao tuyến của hai mặt phẳng (ABM) và (SCD)....
Bài 4.5 trang 77 Toán 11 Tập 1: Cho hình chóp tứ giác S.ABCD và lấy một điểm E thuộc cạnh SA của hình chóp (E khác S, A). Trong mặt phẳng (ABCD) vẽ một đường thẳng d cắt các cạnh CB, CD lần lượt tại M, N và cắt các tia AB, AD lần lượt tại P, Q....
Bài 4.6 trang 77 Toán 11 Tập 1: Cho hình tứ diện ABCD. Trên các cạnh AC, BC, BD lần lượt lấy các điểm M, N, P sao cho AM = CM, BN = CN, BP = 2DP.....
Bài 4.7 trang 77 Toán 11 Tập 1: Tại các nhà hàng, khách sạn, nhân viên phục vụ bàn thường xuyên phải bưng bê nhiều khay, đĩa đồ ăn khác nhau. Một trong những nguyên tắc nhân viên cần nhớ là khay phải được bưng bằng ít nhất 3 ngón tay. Hãy giải thích tại sao?....
Bài 4.8 trang 77 Toán 11 Tập 1: Bàn cắt giấy là một dụng cụ được sử dụng thường xuyên ở các cửa hàng photo-copy. Bàn cắt giấy gồm hai phần chính: phần bàn hình chữ nhật có kích thước giấy và phần dao cắt có một đầu được cố định vào bàn. Hãy giải thích tại sao khi sử dụng bàn cắt giấy thì các đường cắt luôn là đường thẳng.....
Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 3
Bài 10: Đường thẳng và mặt phẳng trong không gian
Bài 11: Hai đường thẳng song song
Bài 12: Đường thẳng và mặt phẳng song song
Bài 13: Hai mặt phẳng song song