Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 11 Bài 12: Đường thẳng và mặt phẳng song song chi tiết sách Toán 11 Tập 1 Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 12: Đường thẳng và mặt phẳng song song
Lời giải:
Sau bài học này ta sẽ giải quyết được vấn đề trên như sau:
Dây nhợ được cang dọc theo cạnh của các viên gạch dẫn, lúc này dây nhợ sẽ là một đường thẳng song song với mặt đất. Khi người thợ tiếp tục xây các viên gạch tiếp theo theo dây nhợ thì hàng gạch tiếp theo sẽ thẳng hàng và bằng, đảm bảo độ thẳng đứng và bằng phẳng cho tường được xây ra.
Toán học mô tả vị trí giữa dây căng, các mép gạch với mặt đất là các đường thẳng song song với mặt phẳng.
1. Đường thẳng song song với mặt phẳng
Lời giải:
Từ hình vẽ ta thấy:
- Xà ngang nằm phía trên và không có điểm chung với mặt đất;
- Cột dọc thẳng đứng và có 1 điểm chung với mặt đất;
- Thanh chống nằm xiên và có 1 điểm chung với mặt đất;
- Thanh bên nằm hoàn toàn trên mặt đất, có vô số điểm chung với mặt đất.
Lời giải:
Quan sát hình ảnh đã cho ta thấy đường thẳng được tạo bởi thanh ngang của cây cầu song song với mặt nước lúc tĩnh lặng.
Lời giải:
Đường thẳng AC cắt các mặt phẳng (BCD) và (ABD).
Đường thẳng AC nằm trong các mặt phẳng (ABC) và (ACD).
2. Điều kiện và tính chất của đường thẳng song song với mặt phẳng
Nếu a và (P) cắt nhau tại điểm M thì M có thuộc (Q) và M có thuộc b hay không? Hãy rút ra kết luận sau khi trả lời các câu hỏi trên.
Lời giải:
Nếu a và (P) cắt nhau tại điểm M thì M có thuộc (Q) (do M thuộc a và a nằm trong (Q)).
Do đó, a cắt b tại M, vậy M thuộc b.
Kết luận: Nếu đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng b nằm trong (P) thì a song song với mặt phẳng (P).
Lời giải:
Phát biểu trên không còn đúng nếu bỏ điều kiện “a không nằm trong mặt phẳng (P)” vì nếu a nằm trong mặt phẳng (P) thì a không thể song song với (P).
Lời giải:
+) Ba đường thẳng a, b, c không cùng nằm trong một mặt phẳng nên đường thẳng c không nằm trong mp(a, b). Vì đường thẳng c song song với đường thẳng b và đường thẳng b nằm trong mp(a, b) nên đường thẳng c song song với mp(a, b).
+) Ba đường thẳng a, b, c không cùng nằm trong một mặt phẳng nên đường thẳng b không nằm trong mp(a, c). Vì đường thẳng b song song với đường thẳng a và đường thẳng a nằm trong mp(a, c) nên đường thẳng b song song với mp(a, c).
Lời giải:
Nếu hai đường thẳng SD và AB không chéo nhau thì SD và AB đồng phẳng hay bốn điểm S, A, B, D đồng phẳng, trái với giả thiết S.ABCD là hình chóp. Do đó, hai đường thẳng SD và AB chéo nhau.
Ta có đường thẳng AB không nằm trong mặt phẳng (SCD) và có AB // CD (giả thiết), đường thẳng CD nằm trong mặt phẳng (SCD), do đó đường thẳng AB song song với mặt phẳng (SCD). Mà mặt phẳng (SCD) chứa đường thẳng SD. Vậy mặt phẳng (SCD) chứa đường thẳng SD và song song với AB.
Lời giải:
Dây nhợ được căng theo hàng gạch đầu tiên, các hàng gạch được xây thẳng hàng và mỗi viên gạch đều có cách cạnh đối diện song song với nhau, do đó mép trên của hàng gạch đầu là một đường thẳng song song với mặt đất nên dây nhợ khi căng song song với mặt đất. Tác dụng của việc căng dậy nhợ để xây tường có độ thẳng, đứng và bằng.
a) Hai đường thẳng a và b có thể chéo nhau hay không?
b) Hai đường thẳng a và b có thể cắt nhau không?
Lời giải:
a) Hai đường thẳng a và b đều nằm trong mặt phẳng (Q) nên hai đường thẳng này không thể chéo nhau.
b) Giả sử hai đường thẳng a và b cắt nhau tại điểm I. Khi đó I ∈ (P) vì I ∈ b và b ⊂ (P).
Mặt khác I ∈ a nên a cắt (P) tại I (vô lí do a song song với (P)). Vậy a // b hay hai đường thẳng a và b không thể cắt nhau.
Lời giải:
Mặt phẳng (ABC) chứa đường thẳng AB song song với mặt phẳng (Q) nên mặt phẳng (ABC) cắt mặt phẳng (Q) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc BC) thì EF là giao tuyến của (Q) và (ABC).
Mặt phẳng (ACD) chứa đường thẳng AD song song với mặt phẳng (Q) nên mặt phẳng (ACD) cắt mặt phẳng (Q) theo giao tuyến song song với AD. Vẽ EN // AD (N thuộc CD) thì EN là giao tuyến của (Q) và (ACD). Khi đó FN là giao tuyến của (Q) và (BCD).
Bài tập
a) Nếu a và (P) có điểm chung thì a không song song với (P).
b) Nếu a và (P) có điểm chung thì a và (P) cắt nhau.
c) Nếu a song song với b và b nằm trong (P) thì a song song với (P).
d) Nếu a và b song song với (P) thì a song song với b.
Lời giải:
a) Mệnh đề a) là mệnh đề đúng vì nếu a và (P) có điểm chung thì a cắt (P) hoặc a nằm trong (P) nên a không song song với (P).
b) Mệnh đề b) là mệnh đề sai vì nếu a và (P) có điểm chung thì a và (P) cắt nhau hoặc a nằm trong (P).
c) Mệnh đề c) là mệnh đề sai vì a có thể nằm trong (P).
d) Mệnh đề d) là mệnh đề sai vì a và b có thể cắt nhau.
a) Đường thẳng AM có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.
b) Đường thẳng MN có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.
Lời giải:
a) Vì M là trung điểm của cạnh AC nên đường thẳng AM chứa điểm C.
Lại có điểm C thuộc mặt phẳng (BCD) và điểm A không thuộc mặt phẳng (BCD) (do bốn điểm A, B, C, D không đồng phẳng). Do đó, đường thẳng AM cắt mặt phẳng (BCD) tại điểm C. Vậy đường thẳng AM không song song với mặt phẳng (BCD).
b) Vì M, N lần lượt là trung điểm của các cạnh AC, AD nên MN là đường trung bình của tam giác ACD, suy ra MN // CD.
Lại có đường thẳng CD nằm trong mặt phẳng (BCD) và đường thẳng MN không nằm trong mặt phẳng (BCD).
Vậy đường thẳng MN song song với mặt phẳng (BCD).
Lời giải:
Vì M, N lần lượt là trung điểm của hai cạnh BC, CD nên MN là đường trung bình của tam giác BCD, suy ra MN // BD.
Mà đường thẳng MN nằm trong mặt phẳng (AMN).
Do đó, đường thẳng BD song song với mặt phẳng (AMN).
Lời giải:
+) Mặt phẳng (SAB) chứa đường thẳng AB song song với mặt phẳng (P) nên mặt phẳng (SAB) cắt mặt phẳng (P) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc SB) thì EF là giao tuyến của (P) và (SAB).
+) Mặt phẳng (SAD) chứa đường thẳng AD song song với mặt phẳng (P) nên mặt phẳng (SAD) cắt mặt phẳng (P) theo giao tuyến song song với AD. Vẽ EG // AD (G thuộc SD) thì EG là giao tuyến của (P) và (SAD).
+) Trong mặt phẳng (SCD), qua G vẽ đường thẳng song song với CD cắt SC tại H.
Ta có: GH // CD và CD // AB nên GH // AB, do đó GH nằm trong mặt phẳng (P).
Vì G thuộc SD nên G thuộc mặt phẳng (SCD) và H thuộc SC nên H thuộc mặt phẳng (SCD), do đó GH nằm trong mặt phẳng (SCD).
Vậy GH là giao tuyến của (P) và (SCD).
+) Nối H với F, ta có H thuộc SC nên H thuộc mặt phẳng (SBC). Vì F thuộc SB nên F thuộc mặt phẳng (SBC). Do đó, HF nằm trong mặt phẳng (SBC).
Lại có H và F đều thuộc (P) nên HF nằm trong mặt phẳng (P).
Vậy HF là giao tuyến của (P) và (SBC).
+) Ta có: EF // AB và GH // AB nên EF // GH, do vậy tứ giác EFHG là hình thang.
Lời giải:
Cánh cửa có dạng hình chữ nhật nên mép trên cửa song song với mép dưới cửa. Mà mép dưới của cửa luôn tạo với mặt sàn một đường thẳng, do đó mép trên của cửa luôn song song với mặt sàn nhà.
Video bài giảng Toán 11 Bài 12: Đường thẳng và mặt phẳng song song - Kết nối tri thức
Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 11: Hai đường thẳng song song
Bài 12: Đường thẳng và mặt phẳng song song
Bài 13: Hai mặt phẳng song song
Lý thuyết Đường thẳng và mặt phẳng song song
1. Đường thẳng song song với mặt phẳng
Cho đường thẳng d và mặt phẳng . Nếu d và không có điểm chung thì ta nói d song song với hay song song với d. Kí hiệu là hay .
*Nhận xét:
Nếu d và có một điểm chung duy nhất thì ta nói d và cắt nhau tại M. Kí hiệu hay .
Nếu d và có nhiều hơn 1 điểm chung thì ta nói d nằm trong hay chứa d. Kí hiệu hay .
2. Điều kiện và tính chất của đường thẳng song song với mặt phẳng
Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng nằm trong (P) thì ta nói .
Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b thì b//a.