Giải SGK Toán 8 Bài 9 (Kết nối tri thức): Phân tích đa thức thành nhân tử

12.2 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 8 Bài 9: Phân tích đa thức thành nhân tử chi tiết sách Toán 8 Tập 1 Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 9: Phân tích đa thức thành nhân tử

1. Phân tích đa thức thành nhân tử bằng cách đặt nhân tử chung

Giải Toán 8 trang 42 Tập 1

HĐ 1 trang 42 Toán 8 Tập 1: Hãy viết đa thức x22xy thành tích của các đa thức, khác đa thức là số.

Phương pháp giải:

Áp dụng tính chất phân phối của phép nhân đối với phép cộng để đặt nhân tử chung.

Lời giải:

x22xy=x.x2xy=x(x2y)

Luyện tập 1 trang 42 Toán 8 Tập 1Phân tích các đa thức sau thành nhân tử:

a)      6y3+2y

b)      4(xy)3x(xy)

Phương pháp giải:

Áp dụng tính chất phân phối của phép nhân đối với phép cộng để đặt nhân tử chung.

Lời giải:

a) 6y3+2y=2y.(3y2+1)

b) 4(xy)3x(xy)=(xy)(43x)

Vận dụng 1 trang 42 Toán 8 Tập 1Giải bài toán mở đâu bằng cách phân tích 2x2+x thành nhân tử.

Phương pháp giải:

Áp dụng tính chất phân phối của phép nhân đối với phép cộng để đặt nhân tử chung.

A.B=0[A=0B=0

Lời giải:

2x2+x=0x(2x+1)=0[x=02x+1=0[x=0x=12

Vậy x=0;x=12

2. Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức

Giải Toán 8 trang 43 Tập 1

Luyện tập 2 trang 43 Toán 8 Tập 1Phân tích các đa thức sau thành nhân tử

a)      (x+1)2y2

b)      x3+3x2+3x+1

c)      8x312x2+6x1

Lời giải

a) (x+1)2y2=(x+1+y)(x+1y)

b) x3+3x2+3x+1=(x+1)3

c) 8x312x2+6x1=(2x)33.(2x)2.1+3.2x.113=(2x1)3

3. Phân tích đa thức thành nhân tử bằng cách nhóm các hạng tử

Giải Toán 8 trang 44 Tập 1

Luyện tập 3 trang 44 Toán 8 Tập 1Phân tích đa thức 2x24xy+2yx thành nhân tử.

Phương pháp giải:

Sử dụng cách nhóm hạng tử

Lời giải:

2x24xy+2yx=(2x24xy)+(2yx)=2x(x2y)(x2y)=(x2y)(2x1)

Vận dụng 2 trang 44 Toán 8 Tập 1Tính nhanh giá trị của biểu thức

A=x2+2y2xxy tại x=2022,y=2020

Phương pháp giải:

Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử rồi thay các giá trị của x, y vào biểu thức.

Lời giải:

A=x2+2y2xxy=(x2+2y)(2x+xy)=x(x+2)x(2+y)=x[x+2(2+y)]=x.(xy)

Thay x=2022,y=2020 vào A ta được:

A=2022.(20222020)=2022.2=4044

Tranh luận trang 44 Toán 8 Tập 1Phân tích đa thức x3x thành nhân tử.

  (ảnh 2)

Em hãy nêu ý kiến của em về lời giải của Tròn và Vuông.

Phương pháp giải:

Kết hợp phương pháp đặt nhân tử chung và sử dụng hằng đẳng thức.

Lời giải:

x3x=x(x21)=x(x1)(x+1)

Bạn Tròn có kết quả đúng, bạn Vuông chưa phân tích triệt để.

Bài tập

Bài 2.22 trang 44 Toán 8 Tập 1Phân tích các đa thức sau thành nhân tử:

a)x2+xy;b)6a2b18ab;c)x34x;d)x48x.

Phương pháp giải

Sử dụng phương pháp đặt nhân tử chung và sử dụng hằng đẳng thức.

Lời giải:

a)x2+xy=x.x+x.y=x(x+y);b)6a2b18ab=6ab(a3);c)x34x=x(x24)=x(x2)(x+2);d)x48x=x(x38)=x(x2)(x2+2x+4).

Bài 2.23 trang 44 Toán 8 Tập 1

Phân tích các đa thức sau thành nhân tử:

a)      x29+xy+3y

b)      x2y+x2+xy1

Phương pháp giải

Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử, sử dụng hằng đẳng thức.

Lời giải:

a)     x29+xy+3y=(x29)+(xy+3y)=(x3)(x+3)+y(x+3)=(x+3)(x3+y)

b)     x2y+x2+xy1=(x2y+xy)+(x21)=xy(x+1)+(x+1)(x1)=(x+1)(xy+x1)

Bài 2.24 trang 44 Toán 8 Tập 1Tìm x biết:

a)      x24x=0

b)      2x32x=0

Phương pháp giải

Phân tích đa thức thành nhân tử.

A.B=0[A=0B=0

Lời giải:

a)

x24x=0x(x4)=0[x=0x4=0[x=0x=4

Vậy x{0;4}

b)

2x32x=02x(x21)=02x(x1)(x+1)=0[x=0x1=0x+1=0[x=0x=1x=1

Vậy x{0;1;1}

Bài 2.25 trang 44 Toán 8 Tập 1Một mảnh vườn hình vuông có độ dài cạnh bằng x (mét). Người ta làm đường đi xung quanh mảnh vườn, có độ rộng như nhau và bằng y (mét) (H.2.2)

 (ảnh 1)

a)      Viết biểu thức tính diện tích S của đường bao quanh mảnh vườn theo x và y.

b)      Phân tích S thành nhân tử rồi tính A khi x=102 m, y=2 m.

Phương pháp giải

Viết biểu thức.

Diện tích đường bao quanh = diện tích mảnh vườn hình vuông – diện tích bên trong vườn.

Phân tích đa thức thành nhân tử.

Lời giải:

a)      S=x2(x2y)2

b)     S=x2(x2y)2=(xx+2y)(x+x2y)=2y.(2x2y)=2y.2(xy)=4y(xy)

Khi x=102 m, y=2 m thì S=4.2.(1022)=800 (m2)

Video bài giảng Toán 8 Bài 9: Phân tích đa thức thành nhân tử - Kết nối tri thức

Xem thêm các bài giải SGK Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Bài 10: Tứ giác

Lý thuyết Phân tích đa thức thành nhân tử

Phân tích đa thức thành nhân tử:

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.

Phân tích đa thức thành nhân tử bằng cách đặt nhân tử chung:

Ví dụ: Phân tích đa thức x3+x thành nhân tử: x3+x=x.x2+x=x(x2+1)

Phân tích đa thức thành nhân tử bằng cách nhóm nhân tử:

Ví dụ: Phân tích đa thức xy+3z+xz+3y thành nhân tử:

 xy+3z+xz+3y=(xy+xz)+(3z+3y)=x(y+z)+3(z+y)=(x+3)(y+z)

Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức như thế nào?

Ví dụ: Phân tích đa thức x28x+16 thành nhân tử: x28x+16=x22.x.4+42=(x4)2

 

Đánh giá

0

0 đánh giá