Luyện tập 4 trang 39 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

1 K

Với giải Luyện tập 4 trang 39 SGK Toán 10 Kết nối tri thức chi tiết trong Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Luyện tập 4 trang 39 Toán 10 Tập 2: Cho đường thẳng ∆: y = ax + b với a ≠ 0.

a) Chứng minh rằng ∆ cắt trục hoành.

b) Lập phương trình đường thẳng ∆0 đi qua điểm O(0; 0) và song song (hoặc trùng) với ∆.

c) Hãy chỉ ra mối quan hệ giữa αΔ và αΔ0

d) Gọi M là giao điểm của ∆0 với nửa đường tròn đơn vị và x0 là hoành độ của M. Tính tung độ của M theo x0 và a. Từ đó, chứng minh tanαΔ= a

Lời giải:

a) Phương trình đường thẳng ∆ có dạng  ax – y + b = 0

Đường thẳng ∆ có vectơ pháp tuyến nΔ(a; -1) với a ≠ 0

Trục Ox có vectơ pháp tuyến là vectơ đơn vị j(0; 1)

Ta có: a.1 – (-1).0 = a ≠ 0 nên nΔ và j không cùng phương nên đường thẳng ∆ cắt trục hoành.

b) Vì đường thẳng ∆0 song song (hoặc trùng) với ∆ nên nΔvà nΔ0cùng phương với nhau. Do đó chọn nΔ0(a; -1).

Phương trình đường thẳng ∆0 đi qua điểm O(0; 0) và song song (hoặc trùng) với ∆ là:

a(x – 0) – 1(y – 0) = 0 hay ax – y = 0.

c) Do ∆0 song song với đường thẳng ∆ nên αΔαΔ0(hai góc đồng vị).

Vậy αΔαΔ0.

d) Vì M là giao điểm của ∆0 với nửa đường tròn đơn vị nên toạ độ điểm M thoả mãn phương trình đường thẳng ∆0

Do đó, ta có: ax0 – y = 0 ⇒ y = ax0

⇒ M(x0; ax0)

Mặt khác ta có: tanαΔ= tanαΔ0ax0x0 = a.

Đánh giá

0

0 đánh giá