Hoạt động 3 trang 38 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

842

Với giải Hoạt động 3 trang 38 SGK Toán 10 Kết nối tri thức chi tiết trong Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Hoạt động 3 trang 38 Toán 10 Tập 2: Cho hai đường thẳng cắt nhau ∆1 và ∆2 tương ứng có các vectơ pháp tuyến n1;n2. Gọi φ là góc giữa hai đường thẳng đó (H7.7). Nêu mối quan hệ giữa:

a) góc φ và góc (n1;n2);

b) cos φ và cos(n1;n2).

Giải Toán 10 Bài 20 (Kết nối tri thức): Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách. (ảnh 1) 

Lời giải:

a)

Giải Toán 10 Bài 20 (Kết nối tri thức): Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách. (ảnh 1) 

* Xét trường hợp 1:

Xét tứ giác ABCD có hai góc ADC;^CBA^ bằng 900 nên tứ giác ABCD là tứ giác nội tiếp.

Theo tính chất góc ngoài của tứ giác nội tiếp ta có : A^=C2^= φ

Mặt khác ta có: C2^và (n1;n2) là hai góc kề bù nên (n1;n2)= 180°– C2^= 180° – φ hay (n1;n2) + φ = 180°

⇒ (n1;n2) và φ là hai góc bù nhau. (1)

* Xét trường hợp 2:

Chứng minh tương tự ta có tứ giác EFHK là tứ giác nội tiếp

Giải Toán 10 Bài 20 (Kết nối tri thức): Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách. (ảnh 1) 

Ta có: FEH^K1^= φ (Vì hai góc nội tiếp FEH^và K1^cùng chắn cung FH)

Mặt khác ta có: K1^ và (n1;n2)là hai góc đối đỉnh nên K1^(n1;n2)

⇒ (n1;n2) = φ. (2)

Từ (1) và (2) suy ra: (n1;n2) = φ hoặc (n1;n2) + φ = 180°.

Vậy mối quan hệ giữa góc (n1;n2) và góc φ là (n1;n2) = φ hoặc (n1;n2) + φ = 180°.

b)

* Xét trường hợp 1: (n1;n2)= 180° – φ

Do đó cos(n1;n2)= cos(180° – φ) = -cos φ

* Xét trường hợp 2 : (n1;n2) = φ

Ta có: cos(n1;n2) = cosφ.

Vậy cos(n1;n2) = |cosφ|.

 

Đánh giá

0

0 đánh giá