Cho tam giác ABC có I là giao điểm của ba đường phân giác

2.2 K

Với giải Câu 3 trang 110 Vở bài tập Toán lớp 7 Cánh diều chi tiết trong Bài 11: Tính chất ba đường phân giác của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong Vở bài tập Toán 7. Mời các bạn đón xem:

Giải VBT Toán lớp 7 Bài 11: Tính chất ba đường phân giác của tam giác

Câu 3 trang 110 vở bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có I là giao điểm của ba đường phân giác. M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB. Chứng minh rằng: IA, IB, IC lần lượt là đường trung trực của các đoạn thẳng NP, PM, MN.

Lời giải:

Cho tam giác ABC có I là giao điểm của ba đường phân giác. M, N, P lần lượt là hình chiếu

Do điểm I là giao điểm của ba đường phân giác của tam giác ABC nên IM = IN = IP.

Xét hai tam giác vuông IAP và IAN, ta có:

IA là cạnh chung;

IAP^IAN^(Vì I thuộc tia phân giác góc A).

Suy ra ∆IAP = ∆IAN (cạnh huyền – góc nhọn).

Do đó AP = AN (hai cạnh tương ứng).

Vì IN = IP nên I nằm trên đường trung trực của đoạn thẳng NP.

Vì AP = AN nên A nằm trên đường trung trực của đoạn thẳng NP.

Suy ra IA là đường trung trực của đoạn thẳng NP.

Chứng minh tương tự ta có: IB là đường trung trực của đoạn thẳng MP, IC là đường trung trực của đoạn thẳng MN.

Đánh giá

0

0 đánh giá