Hoạt động 2 trang 12 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

864

Với giải Hoạt động 2 trang 12 SGK Toán 10 Kết nối tri thức chi tiết trong Bài 16: Hàm số bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 16: Hàm số bậc hai

Hoạt động 2 trang 12 Toán 10 Tập 2: Xét hàm số y = S(x) = – 2x2 + 20x (0 < x < 10).

a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số y = – 2x2 + 20x trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị của hàm số y = – 2x2 + 20x có giống với đồ thị của hàm só y = – 2x2 hay không?

Giải Toán 10 Bài 16 (Kết nối tri thức): Hàm số bậc hai (ảnh 1) 

b) Quan sát dạng đồ thị của hàm số y = – 2x2 + 20x trong Hình 6.10, tìm tọa độ điểm cao nhất của đồ thị.

c) Thực hiện phép biến đổi

y = – 2x2 + 20x = – 2(x2 – 10x) = – 2(x2 – 2 . 5 . x + 25) + 50 = – 2(x – 5)2 + 50.

Hãy cho biết giá trị lớn nhất của diện tích mảnh đất được rào chắn. Từ đó suy ra lời giải của bài toán ở phần mở đầu.

Lời giải:

a) Biểu diễn các điểm có tọa độ (0; 0), (2; 32), (4; 48), (5; 50), (6; 48), (8; 32), (10; 0) lên mặt phẳng tọa độ và nối lại được của đồ thị hàm số y = – 2x2 + 20x trên khoảng (0; 10).

Giải Toán 10 Bài 16 (Kết nối tri thức): Hàm số bậc hai (ảnh 1) 

Quan sát hình ta thấy, dạng của đồ thị hàm số y = – 2x2 + 20x giống với dạng của đồ thị hàm số y = – 2x2.

b) Tọa độ điểm cao nhất của đồ thị hàm số y = – 2x2 + 20x là (5; 50).

c) Vì (x – 5)2 ≥ 0 với mọi số thực x

Nên – 2(x – 5)2 ≤ 0 với mọi số thực x

Do đó: – 2(x – 5)2 + 50 ≤ 0 + 50 = 50 với mọi số thực x.

Vậy y ≤ 50.

Vậy giá trị lớn nhất của y là 50 hay diện tích lớn nhất của mảnh đất được rào chắn là 50 m2.

Từ đó ta có lời giải bài toán mở đầu:

Gọi x (mét, x > 0) là khoảng cách từ điểm cọc P và Q đến bờ tường.

Tấm lưới dài 20 m và được rào chắn như Hình 6.8 nên x + x + PQ = 20.

Suy ra: PQ = 20 – x – x = 20 – 2x (m).

Vì PQ > 0 nên 20 – 2x > 0 ⇔ 2x < 20 ⇔ x < 10.

Vậy ta có điều kiện của x là 0 < x < 10.

Mảnh đất được rào chắn có dạng hình chữ nhật với hai kích thước là x (m) và 20 – 2x (m) với 0 < x < 10.

Diện tích của mảnh đất là S(x) = x . (20 – 2x) = – 2x2 + 20x.

Theo yêu cầu bài toán, ta cần tìm giá trị của x để S(x) lớn nhất.

S(x) = – 2(x2 – 10x) = – 2(x2 – 2 . 5 . x + 25) + 50 = – 2(x – 5)2 + 50 ≤ 50 với mọi số thực x.

Dấu “=” xảy ra khi x – 5 = 0 ⇔ x = 5 (thỏa mãn điều kiện 0 < x < 10).

Do đó giá trị lớn nhất của S(x) là 50 tại x = 5.

Vậy hai cột góc hàng rào cần phải cắm cách bờ tường 5 m để mảnh đất được rào chắn của bác Việt có diện tích lớn nhất.

Đánh giá

0

0 đánh giá