Với giải Bài 2 trang 60 SBT Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài 7: Tính chất ba đường trung tuyến của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải SBT Toán lớp 7 Bài 7: Tính chất ba đường trung tuyến của tam giác
Bài 2 trang 60 SBT Toán 7 Tập 2: Cho tam giác ABC có đường trung tuyến AM đồng thời là đường phân giác góc A. Chứng minh tam giác ABC là tam giác cân.
Lời giải:
Vẽ đường cao MH của tam giác AMB và vẽ đường cao MK của tam giác AMC.
• Xét ∆AMH và ∆AMK có:
,
AM là cạnh chung,
(vì AM là tia phân giác của ).
Do đó ∆AMH = ∆AMK (cạnh huyền – góc nhọn).
Suy ra MH = MK (hai cạnh tương ứng).
• Xét ∆BMH và ∆CMK có:
,
MH = MK (chứng minh trên),
BM = CM (vì AM là trung tuyến của tam giác ABC).
Do đó ∆BMH = ∆CMK (cạnh huyền – cạnh góc vuông).
Suy ra (hai góc tương ứng).
Xét tam giác ABC có nên tam giác ABC cân tại A.
Vậy ABC là tam giác cân tại A.
Xem thêm các bài giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 3 trang 60 SBT Toán 7 Tập 2: Cho tam giác ABC có hai trung tuyến AM và CN cắt nhau tại G....
Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 6: Tính chất ba đường trung trực của tam giác
Bài 7: Tính chất ba đường trung tuyến của tam giác
Bài 8: Tính chất ba đường cao của tam giác