Cho tam giác ABC có trung tuyến AM và G là trọng tâm. Chứng minh

1.6 K

Với giải Bài 1 trang 60 SBT Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài 7: Tính chất ba đường trung tuyến của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 7: Tính chất ba đường trung tuyến của tam giác

Bài 1 trang 60 SBT Toán 7 Tập 2: Cho tam giác ABC có trung tuyến AM và G là trọng tâm. Chứng minh:

a) SAMB = SAMC;

b) SABG = 2SBMG;

c) SGAB = SGBC = SGAC.

Lời giải:

Cho tam giác ABC có trung tuyến AM và G là trọng tâm

a) Vẽ đường cao AH của tam giác ABC.

Vì AM là trung tuyến của tam giác ABC nên BM = CM.

Ta có : SAMB=12.AH.BM  SAMC=12.AH.MC

Hai tam giác AMB và AMC có cùng đường cao AH và có cạnh đáy bằng nhau.

Suy ra SAMB = SAMC.

Vậy SAMB = SAMC.

b) Vẽ đường cao BK của tam giác ABM.

Ta có: SABG=12.BK.AG  SBMG=12.BK.GM

Mà G là trọng tâm của tam giác ABC nên GMGA=12 hay AG = 2GM.

Hai tam giác ABG và BMG có cùng đường cao BK và có cạnh đáy AG = 2GM.

Suy ra SABG = 2SBMG.

Vậy SABG = 2SBMG.

c) Ta có: SAMB = SAMC (chứng minh câu a) và SAMB + SAMC = SABC

Nên SAMB=SAMC=12SACB

Vì G là trọng tâm của tam giác ABC nên AG = 23AM.

Lại có: SGAB=12.BK.AG  SAMB=12.BK.AM

Suy ra

SGAB=12.BK.23AM=23SABM=23.12SABC=13SABC

Chứng minh tương tự ta có SGAC=23SACM=13SABC

Ta có SGAB + SGAC + SGBC = SABC

 SABG=13SABC; SACG=13SABC

Suy ra SBCG=13SABC

Do đó SGAB=SGBC=SGAC=13SABC

Vậy SGAB = SGBC = SGAC.

 

Đánh giá

0

0 đánh giá