Gọi I là giao điểm của hai đường phân giác BE và CF của tam giác ABC. Đường thẳng qua I song song với BC cắt AB tại J và cắt AC tại K

2.2 K

Với giải Bài 9.16 trang 55 SBT Toán lớp 7 Kết nối tri thức chi tiết trong Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác

Bài 9.16 trang 55 SBT Toán 7 Tập 2:

a) Gọi I là giao điểm của hai đường phân giác BE và CF của tam giác ABC. Đường thẳng qua I song song với BC cắt AB tại J và cắt AC tại K. Chứng minh JK = BJ + CK.

b) Đường thẳng qua B vuông góc với BI cắt đường thẳng qua C vuông góc với CI tại điểm I’. Qua I’ kẻ đường thẳng song song với BC cắt AB tại J’, cắt AC tại K’. Chứng minh J’K’ = BJ’ + CK’.

Lời giải:

Gọi I là giao điểm của hai đường phân giác BE và CF của tam giác ABC

a) Xét tam giác BFC có BI là đường phân giác nên ta có:

FBI^=IBC^ hay JBI^=IBC^ (5)

Lại có do JI // BC nên ta suy ra được: JBI^=IBC^ (hai góc so le trong)

Vậy suy ra JIB^=JBI^. Từ đó ta suy tam tam giác JIB cân tại J.

Suy ra JI = BJ (1)

Tương tự ta chứng minh được tam giác KIC cân tại I.

Suy ra KI = CK (2)

Từ (1) và (2) suy ra: JK = JI + IK = BJ + CK (đpcm).

b) Vì BI’ vuông góc với BI nên I'BC^+CBI^=90° (3)

 JBI^+I'BJ'^=180°I'BC^+CBI^=180°90°=90°(4)

Từ (3), (4) và (5) suy ra CBI^=I'BJ'^.

Vậy suy ra BI’ là tia phân giác của góc tạo bởi BC và BJ’.

Chứng minh tương tự ta suy ra CI’ là tia phân giác của góc tạo bởi CB và CK’.

Chứng minh tương tự câu a) ta dễ dàng suy ra được tam giác J’BI’ cân tại J’ và tam giác K’CI’ cân tại K’.

Vậy suy ra J’B = J’I’ và K’C = K’I’.

Vậy ta có: J’K’ = J’I’ + I’K’ = J’B + K’C (đpcm).

Từ khóa :
toán 7
Đánh giá

0

0 đánh giá