Trong mặt phẳng tọa độ Oxy, cho đường tròn (x – 6)^2 + (y – 7)^2 = 16

1.3 K

Với giải Bài 52 trang 89 SBT Toán lớp 10 Cánh diều chi tiết trong Bài 5: Phương trình đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài 5: Phương trình đường tròn

Bài 52 trang 89 SBT Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường tròn (x – 6)2 + (y – 7)2 = 16. Hai điểm M, N chuyển động trên đường tròn (C). Khoảng cách lớn nhất giữa hai điểm M và N bằng:

A. 16;

B. 8;

C. 4;

D. 256.

Lời giải:

Do M, N chuyển động trên đường tròn nên khoảng cách lớn nhất giữa 2 điểm M, N chính bằng đường kính của đường tròn.

Bán kính của đường tròn (C) là: R=16=4.

Vậy độ dài lớn nhất của MN = 2R = 8. Chọn đáp án B.

Đánh giá

0

0 đánh giá