Cho Hình 32 có góc BAC= 90 độ , AH vuông góc với BC tại H, góc xAB = góc BAH

2 K

Với giải Bài 40 trang 81 SBT Toán lớp 7 Cánh diều chi tiết trong Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc

Bài 40 trang 81 sách bài tập Toán lớp 7 Tập 2: Cho Hình 32  BAC^=90° , AH vuông góc với BC tại H, xAB^=BAH^ , Ay là tia đối của tia Ax. BD và CE vuông góc với xy lần lượt tại D và E. Chứng minh:

a) AC là tia phân giác của góc Hay;

b) BD + CE = BC;

c) DH vuông góc với HE.

Cho Hình 32 có góc BAC = 90 độ, AH vuông góc với BC tại H, góc xAB = góc BAH, Ay là tia đối của tia Ax

Lời giải:

Cho Hình 32 có góc BAC = 90 độ, AH vuông góc với BC tại H, góc xAB = góc BAH, Ay là tia đối của tia Ax

a) •Ta có xAy^=xAB^+BAC^+CAy^

Hay 180°=xAB^+90°+CAy^

Suy ra CAy^=90°xAB^

•Ta có BAH^+CAH^=BAC^=90°

Nên CAH^=90°BAH^

 xAB^=BAH^(giả thiết)

Suy ra CAH^=CAy^

Do đó AC là tia phân giác của HAy^

Vậy AC là tia phân giác của HAy^ .

b)• Xét ∆ABD và ∆ABH có:

ADB^=AHB^=90°,

AB là cạnh chung,

DAB^=HAB^ (giả thiết),

Do đó ∆ABD = ∆ABH (cạnh huyền – góc nhọn).

Suy ra BD = BH , AD = AH (các cặp cạnh tương ứng).

• Xét ∆ACE và ∆ACH có:

AEC^=AHC^=90°,

AC là cạnh chung,

CAH^=CAE^ (chứng minh câu a),

Do đó ∆ACE = ∆ACH (cạnh huyền – góc nhọn).

Suy ra CE = CH, AE = AH (các cặp cạnh tương ứng).

•Ta có BC = BH + CH

Mà BD = BH, CE = CH.

Do đó BC = BD + CE.

Vậy BC = BD + CE.

c) Gọi I là giao điểm của AB và DH, K là giao điểm của EH và AC.

• Xét ∆ADI và ∆AHI có:

AD = AH (chứng minh câu b),

DAI^=HAI^ (do xAB^=BAH^ ),

AI là cạnh chung.

Do đó ∆ADI = ∆AHI (c.g.c).

Suy ra ADI^=AHI^ (hai góc tương ứng).

Hay ADH^=AHD^ .

• Xét ∆AHK và ∆AEK có:

AH = AE (chứng minh câu b),

HAK^=EAK^ (do HAC^=EAC^ ),

AK là cạnh chung

Do đó ∆AHK = ∆AEK (c.g.c)

Suy ra AHK^=AEK^ (hai góc tương ứng).

Hay AHE^=AEH^ .

Xét ∆ADH có: ADH^+AHD^+HAD^=180° (tổng ba góc của một tam giác).

 ADH^=AHD^ nên AHD^=180°HAD^2

Xét ∆AEH có: AEH^+AHE^+HAE^=180° (tổng ba góc của một tam giác)

 AHE^=AEH^ nên AHE^=180°HAE^2

Ta có

DHE^=AHD^+AHE^=180°HAD^2+180°HAE^2

=360°HAD^+HAE^2=360°180°2=90°

Suy ra DH ⊥ HE.

Vậy DH ⊥ HE.

Đánh giá

0

0 đánh giá