Với giải Vận dụng 2 trang 78 Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài 8: Tính chất ba đường cao của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 8: Tính chất ba đường cao của tam giác
Vận dụng 2 trang 78 Toán lớp 7 Tập 2: Cho tam giác ABC có ba đường cao AD, BE, CF đồng quy tại trực tâm H. Tìm trực tâm của các tam giác HBC, HAB, HAC.
Lời giải:
Tam giác HBC có HD BC, BF HC nên HD và BF là hai đường cao của tam giác HBC.
Mà HD và BF cắt nhau tại A nên A là trực tâm của tam giác HBC.
Tam giác HAB có HF AB, BD AH nên HF, BD là hai đường cao của tam giác HAB.
Mà HF và BD cắt nhau tại C nên C là trực tâm của tam giác HAB.
Tam giác HAC có HE AC, CD AH nên HE, CD là hai đường cao của tam giác HAC.
Mà HE và CD cắt nhau tại B nên B là trực tâm của tam giác HAC.
Xem thêm các bài giải Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 77 Toán lớp 7 Tập 2: Vẽ ba đường cao AH, BK, CE của tam giác nhọn ABC...
Xem thêm các bài giải SGK Toán lớp 7 Chân trời sáng tạo hay, chi tiết:
Giải SGK Toán 7 Bài 7 : Tính chất ba đường trung tuyến của tam giác
Giải SGK Toán 7 Bài 8 : Tính chất ba đường cao của tam giác