Bài 7 trang 86 Toán 10 Tập 2 | Cánh diều Giải toán lớp 10

1.7 K

Với giải Bài 7 trang 86 SGK Toán lớp 10 Cánh diều chi tiết trong Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 7 trang 86 Toán lớp 10 Tập 2:

Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển

a) Tính côsin góc giữa hai đường đi của hai tàu A và B.

b) Sau bao lâu kể từ thời điểm xuất phát hai tàu gần nhau nhất?

c) Nếu tàu A đứng yên ở vị trí ban đầu, tàu B chạy thì khoảng cách ngắn nhất giữa hai tàu bằng bao nhiêu?

Lời giải:

a) Giả sử đường đi của tàu A là d1, khi đó phương trình d1:

Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển

Giả sử đường đi của tàu B là d2, vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t) nên phương trình d2:

Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển

Đường thẳng d1 có vectơ chỉ phương là u1=33;25.

Đường thẳng d2 có vectơ chỉ phương là u2=30;40.

Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển

Vậy côsin góc giữa hai đường đi của hai tàu A và B là 151714.

b) Đường thẳng d1 đi qua điểm A(3; – 4) và có một vectơ pháp tuyến là n1=25;33.

Do đó phương trình tổng quát của d1 là 25(x – 3) + 33(y + 4) = 0 hay 25x + 33y + 57 = 0.

Đường thẳng d2 đi qua điểm B(4; 3) và có một vectơ pháp tuyến là n2=4;3.

Do đó phương trình tổng quát của d2 là 4(x – 4) – 3(y – 3) = 0 hay 4x – 3y – 7 = 0.

Tọa độ giao điểm của hai đường thẳng d1 và d2 là nghiệm của hệ phương trình

Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển

Do đó hai đường thẳng d1 và d2 cắt nhau tại điểm có tọa độ 2069;403207.

Khi đó hai tàu A và tàu B gần nhau nhất khi hai tàu ở vị trí tọa độ 2069;403207.

Thay tọa độ 2069;403207 vào phương trình tham số d1 ta được:

Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển

Vậy sau 17207 giờ kể từ thời điểm xuất phát thì hai tàu gần nhau nhất.

c) Vì tàu A đứng yên ở vị trí ban đầu nên thời gian tàu A chạy là t = 0, do đó tàu A đứng ở vị trí A(3; – 4).

Khi đó khoảng cách ngắn nhất giữa hai tàu chính là khoảng cách từ điểm A đến đường đi của tàu B chính là đường thẳng d2: 4x – 3y – 7 = 0.

Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển

Vậy nếu tàu A đứng yên ở vị trí ban đầu, tàu B chạy thì khoảng cách ngắn nhất giữa hai tàu bằng 3,4 km.

Đánh giá

0

0 đánh giá