20 câu Trắc nghiệm Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (Cánh diều) có đáp án 2024 – Toán lớp 7

3.8 K

Tailieumoi.vn xin giới thiệu Trắc nghiệm Toán lớp 7 Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh sách Cánh diều. Bài viết gồm 20 câu hỏi trắc nghiệm với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài trắc nghiệm Toán 7.

Trắc nghiệm Toán 7 Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh

Câu 1. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Biết AB=AD, B^=D^=90°,BAC^=60°. Số đo góc ACD là:

A. 20°;

B. 30°;

C. 40°;

D. 60°.

Đáp án đúng là: B

Xét ∆ABC và ∆ADC có:

ABC^=ADC^=90°

AB = AD (giả thiết),

AC là cạnh chung

Do đó ∆ABC = ∆ADC (cạnh huyền – cạnh góc vuông)

Suy ra ACB^=ACD^ (cặp góc tương ứng)

Xét ∆ABC vuông tại B có: BAC^+BCA^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

Suy raBCA^=90°-BAC^=90°-60°=30°

Mà ACB^=ACD^ (chứng minh trên)

Do đó ACD^=30°

Vậy số đo góc ACD là 30°.

Câu 2. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo góc C và góc M lần lượt là:

A. 45° và 65°;

B. 65° và 45°;

C. 55° và 70°;

D. 70° và 55°.

Đáp án đúng là: A

Xét tam giác ABC và tam giác MNP có:

AB = MN, BC = NP, AC = MP (giả thiết)

Suy ra ∆ABC = ∆MNP (c.c.c)

Do đó A^=M^,B^=N^,C^=P^ (các cặp góc tương ứng)

Mà A^=65°N^=70° nên M^=65°,B^=70°

Xét tam giác ABC có: B^+C^+A^=180° (tổng ba góc trong một tam giác)

Suy ra C^=180°-B^-A^

Hay C^=180°-70°-65°=45°

Vậy số đo góc C và góc M lần lượt là: 45° và 65°.

Câu 3. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo của KAB^ trong hình vẽ trên bằng:

A. 50°;

B. 40°;

C. 30°;

D. 20°.

Đáp án đúng là: D

Xét tam giác ABH và tam giác ABK có:

AH = AK, BH = BK, AB là cạnh chung

Suy ra ∆ABH = ∆ABK (c.c.c)

Do đó H^=K^ (cặp góc tương ứng)

Mà H^=120° nên K^=120°

Xét tam giác ABK có: BAK^+K^+ABK^=180° (tổng ba góc trong một tam giác)

Suy ra BAK^=180°-K^-ABK^

Hay BAK^=180°-120°-40°=20°

Vậy số đo của BAK^ bằng 20°.

Câu 4. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số cặp tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh là:

A. 1;

B. 2;

C. 3;

D. 4.

Đáp án đúng là: C

+) Xét ∆MNP và ∆MQP có:

MN = MQ, NP = QP, MP là cạnh chung

Suy ra ∆MNP = ∆MQP (c.c.c)

+) Xét ∆NPO và ∆QPO có:

NP = QP, NO = QO, PO là cạnh chung

Suy ra ∆NPO = ∆QPO (c.c.c)

+) Xét ∆MNO và ∆MQO có:

MN = MQ, NO = QO, MO là cạnh chung

Suy ra ∆MNO = ∆MQO (c.c.c)

Vậy trong hình vẽ trên có 3 cặp tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh.

Câu 5. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Khẳng định nào sau đây là sai?

A. BAC^=100° và AD // BC;

B. BAC^=100° và AD không song song với BC;

C. BAC^=100° và AB // DC;

D. ∆ABC = ∆CDA.

Đáp án đúng là: B

• Xét ∆ABC và ∆ACD có:

AB = CD, BC = DA, AC là cạnh chung

Suy ra ∆ABC = ∆CDA (c.c.c)

Do đó phương án D là đúng.

• Vì ∆ABC = ∆CDA (chứng minh trên)

Nên BAC^=DCA^ (hai góc tương ứng)

Mà DCA^=100°

Nên BAC^=100°

Mặt khác: ∆ABC = ∆CDA (chứng minh trên)

Suy ra DAC^=BCA^ (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong

Do đó AD // BC (dấu hiệu nhận biết).

Vậy A là đúng

Ta có BAC^=DCA^ (chứng minh trên)

Mà hai góc này ở vị trí so le trong

Do đó AB // DC (dấu hiệu nhận biết). Vậy C là đúng

Vậy ta chọn đáp án B.

Câu 6. Cho hình vẽ sau:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo của BAC^ trong hình vẽ trên bằng:

A. 20°;

B. 40°;

C. 80°;

D. 120°.

Đáp án đúng là: C

Vì AHBCnên AHB^=AHC^=90°

Xét ∆ABH và ∆ACH có:

AHB^=AHC^=90° (chứng minh trên),

AB = AC (giả thiết),

AH là cạnh chung

Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông)

Suy ra BAH^=CAH^ (cặp góc tương ứng)

Mà BAH^=40° nên CAH^=40°

Ta có BAC^=BAH^+CAH^

Suy ra BAC^=40°+40°=80°

Vậy số đo góc BAC là 80°.

Câu 7. Xét bài toán “∆IAB và ∆IAC có AB = AC, IB = IC (điểm I nằm ngoài tam giác ABC). Chứng minh rằng AIB^=AIC^.”

Cho các câu sau:

(1) “AB = AC (giả thiết),

IB = IC (giả thiết),

IA là cạnh chung”;

(2) “Suy ra ∆IAB = ∆IAC (c.c.c)”;

(3) “Do đó AIB^=AIC^ (hai góc tương ứng)”;

(4) “Xét ∆IAB và ∆IAC có:”.

Hãy sắp xếp một cách hợp lí các câu trên để giải bài toán.

A. (2), (4), (1); (3);

B. (4), (2), (1), (3);

C. (1), (2), (3), (4);

D. (4), (1), (2), (3).

Đáp án đúng là: D

Ta đi chứng minh AIB^=AIC^ như sau:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét ∆IAB và ∆IAC có:

AB = AC (giả thiết),

IB = IC (giả thiết),

IA là cạnh chung;

Suy ra ∆IAB = ∆IAC (c.c.c);

Do đó AIB^=AIC^ (hai góc tương ứng).

Vậy ta chọn phương án D.

Câu 8. Cho hình vẽ sau:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Khẳng định nào sau đây là đúng ?

A. ∆ABC = ∆ADC;

B. ∆ABC = ∆ACD;

C. ∆ACB = ∆ADC;

D. ∆BCA = ∆DAC.

Đáp án đúng là: A

Xét tam giác ABC và tam giác CDA có:

AB = AD, BC = DC, AC là cạnh chung

Suy ra ∆ABC = ∆ADC (c.c.c)

Vậy ∆ABC = ∆ADC hay ta có thể kí hiệu ∆ACB = ∆ACD hoặc ∆BCA = ∆DCA.

Do đó ta chọn phương án A.

Câu 9. Cho tam giác ABC có AB = AC, I là trung điểm của BC. Biết ABC^=80°, số đo của CAI^ là:

A. 40°;

B. 30°;

C. 20°;

D. 10°.

Đáp án đúng là: D

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét tam giác ABI và tam giác ACI có:

AB = AC (giả thiết),

IB = IC (do I là trung điểm của BC),

AI là cạnh chung

Do đó ∆ABI = ∆ACI (c.c.c)

Suy ra BAI^=CAI^,AIB^=AIC^,ABI^=ACI^ (các cặp góc tương ứng)

Mà ABI^=80° nên ACI^=80°

Ta có:AIB^+AIC^=180° (hai góc kề bù)

Nên AIB^=AIC^=180°2=90°

Do đó tam giác ACI vuông tại I

Khi đó ACI^+CAI^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

Suy ra CAI^=90°-ACI^=90°-80°=10°

Vậy ta chọn phương án D.

Câu 10. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo góc M và độ dài cạnh MN lần lượt là:

A. M^=45° MN = 5 cm;

B. M^=60° MN = 3 cm;

C. M^=75° MN = 5 cm;

D. M^=80° MN = 3 cm.

Đáp án đúng là: C

Xét tam giác ABC và tam giác MNP có:

AB = MN, BC = NP, AC = MP (giả thiết)

Suy ra ∆ABC = ∆MNP (c.c.c)

Do đó MN = BA = 5 cm (hai cạnh tương ứng) và M^=A^ (hai góc tương ứng)

Xét tam giác BCA có: B^+C^+A^=180°(định lí tổng ba góc trong một tam giác)

Suy ra A^=180°-B^-C^

Hay A^=180°-45°-60°=75°

Do đó M^=75°

Vậy M^=75° và MN = 5 cm.

Câu 11. Cho tam giác IOH, vẽ cung tròn tâm I bán kính OH, vẽ cung tròn tâm O bán kính IH, hai cung tròn này cắt nhau tại K (K và H nằm khác phía so với đường thẳng IO). Khẳng định nào sau đây là đúng nhất?

A. HO // KI;

B. OK // IH;

C. Cả A và B đều sai;

D. Cả A và B đều đúng.

Đáp án đúng là: D

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét ∆IOH và ∆IOK có:

KO = IH (K nằm trên cung tròn tâm O bán kính IH),

OH = IK (K nằm trên cung tròn tâm I bán kính OH),

IO là cạnh chung

Do đó ∆IOH = ∆OIK (c.c.c)

Suy ra IOH^=OIK^,OIH^=IOK^ (các cặp góc tương ứng)

Mà OIK^ và IOH^ ở vị trí so le trong của IK và OH nên IK // OH (dấu hiệu nhận biết)

IOK^ và OIH^ ở vị trí so le trong của KO và IH nên KO // IH (dấu hiệu nhận biết)

Vậy ta chọn phương án D.

Câu 12. Cho tam giác MNP có MN < MP. Lấy điểm I trên cạnh MP sao cho MN = PI. Gọi H là điểm sao cho HM = HP, HN = HI.

Khẳng định nào sau đây là đúng ?

A. ∆MNH = ∆PIH;

B. ∆MNH = ∆PHI;

C. MNH^=HPI^;

D. MHN^=HIP^.

Đáp án đúng là: A

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét ∆MNH và ∆PIH ta có:

HM = HP (giả thiết);

HN = HI (giả thiết);

MN = PI (giả thiết).

Do đó ∆MNH = ∆PIH (c.c.c)

Suy ra MNH^=PIH^,MHN^=PHI^ (các cặp góc tương ứng)

Vậy ta chọn phương án A.

Câu 13. Cho hai tam giác MNP và OHK có MN = OH, NP = HK. Điều kiện để ∆NMP = ∆HOK theo trường hợp cạnh – cạnh – cạnh là:

A. MP = OH;

B. MN = KH;

C. MP = OK;

D. Không có điều kiện nào thoả mãn.

Đáp án đúng là: C

Vì ∆NMP = ∆HOK theo trường hợp cạnh – cạnh – cạnh mà MN = OH, NP = HK

Nên điều kiện còn thiếu là MP = OK.

Vậy ta chọn phương án C.

Câu 14. Cho tam giác NMP (NP < MN). Trên cạnh MN lấy điểm E sao cho NE = NP. Lấy Q là trung điểm của PE. Qua M kẻ đường thẳng vuông góc với PE tại F. Chọn khẳng định đúng:

A. NQE^=80°

B. FM // NQ;

C. ∆ENQ = ∆PQN;

D. Cả A, B, C đều đúng.

Đáp án đúng là: B

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

• Xét ∆ENQ và ∆PQN có:

NE = NP (giả thiết),

QE = QP (do Q là trung điểm của PE),

NQ là cạnh chung

Suy ra ∆ENQ = ∆PNQ (c.c.c)

Do đó phương án C là sai.

• Vì ∆ENQ = ∆PNQ (chứng minh trên)

Suy ra ENQ^=PNQ^,NEQ^=NPQ^,EQN^=NQP^ (các cặp góc tương ứng)

Mà EQN^+PQN^=180° (hai góc kề bù)

Nên EQN^=PQN^=180°2=90°

Do đó NQ  PE. Vậy đáp án A là sai

Mà FM  PE (giả thiết), nên FM // NQ , vậy đáp án B là đúng

Vậy ta chọn phương án B.

Câu 15. Cho hình vẽ:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Biết BAD^=CDA^=90°, AC = BD. Độ dài cạnh CD là:

A. 4 cm;

B. 5 cm;

C. 2 cm;

D. 3 cm.

Đáp án đúng là: C

Xét ∆ABD và ∆ACD có:

BAD^=CDA^=90° (giả thiết),

AC = BD (giả thiết),

AD là cạnh chung

Do đó ∆ABD = ∆DCA (cạnh huyền – cạnh góc vuông)

Suy ra AB = CD (cặp cạnh tương ứng)

Mà AB = 2 cm nên CD = 2 cm.

Vậy độ dài cạnh CD là 2 cm.

Xem thêm các bài trắc nghiệm Toán 7 Cánh diều hay, chi tiết khác:

Trắc nghiệm Toán 7 Bài 3: Hai tam giác bằng nhau

Trắc nghiệm Toán 7 Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh

Trắc nghiệm Toán 7 Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh

Trắc nghiệm Toán 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc

Trắc nghiệm Toán 7 Bài 7: Tam giác cân

Đánh giá

0

0 đánh giá