Luyện tập 3 trang 57 Toán 10 tập 1 | Kết nối tri thức Giải Toán lớp 10

2.2 K

Với giải Luyện tập 3 trang 57 Toán lớp 10 Kết nối tri thức với cuộc sống trong Bài 9: Tích của một vecto với một số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 9: Tích của một vecto với một số

Luyện tập 3 trang 57 Toán lớp 10: Trong hình 4.27, hãy biểu thị mỗi vecto u,v theo hai vecto a,b, tức là tìm các số x,y,z,t để u=xa+yb,v=ta+zb.

Luyện tập 2 trang 57 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 2)

Phương pháp giải:

Phân tích vecto u,v theo hai vecto a,b cho trước.

Lời giải:

Bước 1: Dựng hình bình hành có cạnh song song với giá của vecto a,b và đường chéo là vecto u,v.

 Luyện tập 2 trang 57 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 3)

Ta dựng được hình hình hành ABCD và DEGH. Trong đó:  DC và DE nằm trên giá của vecto a, DA và DH nằm trên giá của vecto b, còn vecto u,v lần lượt là hai dường chéo.

Dễ thấy: u=DA+DC,v=DH+DE

Mà DA=3b,DC=a,DH=3b,DE=2a.

u=2b+a,v=3b2a

Lý thuyết Các tính chất của phép nhân vectơ với một số

Với hai vectơ ab và hai số thực k, t, ta luôn có :

+) k(ta) = (kt) a;

+) k (a + b) = ka + kb; k (a – b) = ka – kb;

+) (k + t) a = ka + ta;

+) 1a = a; (–1) a = –a.

Nhận xét:

Điểm I là trung điểm của đoạn thẳng AB khi và chỉ khi IA+IB=0.

Điểm G là trọng tâm của tam giác ABC khi và chỉ khi GA+GB+GC=0.

Ví dụ:

a) Cho đoạn thẳng CD có trung điểm I. Chứng minh với điểm O tùy ý, ta có OC+OD=2OI.

b) Cho tam giác ABC có G là trọng tâm. Chứng minh rằng với điểm O tùy ý, ta có OA+OB+OC+OD=3OG.

Hướng dẫn giải

a) Vì I là trung điểm của CD nên ta có IC+ID=0.

Do đó OC+OD=(OI+IC)+(OI+ID) = 2OI + (IC+ID)= 2OI + 0 = 2OI.

Vậy, OC+OD=2OI.

b) Vì G là trọng tâm tam giác ABC nên: GA+GB+GC=0.

Ta có OA+OB+OC=(OG+GA)+(OG+GB)+(OG+GC)

3OG+(GA+GB+GC)=3OG+0=3OG

Vậy OA+OB+OC=3OG.

Chú ý : Cho hai vectơ không cùng phương a và b. Khi đó, mọi vectơ u đều biểu thị (phân tích) được một cách duy nhất theo hai vectơ a và b, nghĩa là có duy nhất cặp số (x; y) sao cho u = xa + yb.

Tích của một vectơ với một số

Ví dụ : Cho tam giác ABC. Hãy xác định điểm M để MA+3MB+2MC=0.

Hướng dẫn giải

Tích của một vectơ với một số

Để xác định vị trí của M, trước hết ta biểu thị AM (với gốc A đã biết) theo hai vectơ đã biết AB,AC.

MA+3MB+2MC=0

⇔ MA+3(MA+AB)+2(MA+AC)=0

⇔ 6MA+3AB+2AC=0

⇔ AM=12AB+13AC

Lấy điểm E là trung điểm của AB và điểm F thuộc cạnh AC sao cho AF=13AC.

Khi đó AE=12AB và AF=13AC. Vì vậy AM=AE+AF.

Suy ra M là đỉnh thứ tư của hình bình hành EAFM.

Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vecto với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vecto

Bài tập cuối chương 4

Đánh giá

0

0 đánh giá