Giải SBT Toán 10 trang 93 Tập 1 Cánh diều

844

Với lời giải SBT Toán 10 trang 93 Tập 1 chi tiết trong Bài 4: Tổng và hiệu của hai vectơ sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài 4: Tổng và hiệu của hai vectơ

Bài 41 trang 93 SBT Toán 10 Tập 1Cho hai vectơ a, b khác 0. Chứng minh rằng nếu hai vectơ cùng hướng thì a+b=a+b.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Không mất tính tổng quát ta lấy một điểm A bất kì, vẽ AB=aBC=b

Vì hai vectơ a,b cùng hướng nên A, B, C thẳng hàng, B nằm giữa A và C.

Ta có:

 

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Bài 42 trang 93 SBT Toán 10 Tập 1Cho hình vuông ABCD cạnh a. Tính AB+AC.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lấy E là điểm thỏa mãn ABEC là hình bình hành, gọi M là trung điểm của BC.

Khi đó ta có:

AB+AC=AE

 AB+AC=AE=AE

Vì M là trung điểm của BC nên M là trung điểm của AE

 AE = 2AM.

Xét tam giác ABM vuông tại B, có:

AM2 = AB2 + BM2 (định lí pythagoras)

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Bài 43 trang 93 SBT Toán 10 Tập 1: Cho tứ giác ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo, E là trung điểm của AD, G là giao điểm của BE và AC. Tính:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

a) Xét hình bình hành ABCD, có O là giao điểm của AC và BD nên O là trung điểm của AC và O là trung điểm của BD.

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

b) Xét tam giác ABD, có:

AO là trung tuyến, BE là đường trung tuyến

Mà AO giao với BE tại G nên G là trọng tâm tam giác ABD

 GA+GB+GD=0

Vậy GA+GB+GD=0.

Bài 44 trang 93 SBT Toán 10 Tập 1: Cho tam giác ABC. Tìm tập hợp các điểm M trong mặt phẳng thỏa mãn AB+BM=ACAM.

Lời giải:

Ta có: AB+BM=AM

 AB+BM=AM=AM

Ta lại có: ACAM=AC+MA=MC

 ACAM=MC=MC

Vì AB+BM=ACAM nên AM = MC

Tập hợp điểm M thỏa mãn AM = MC là đường trung trực của đoạn thẳng AC.

Vậy tập hợp điểm M thỏa mãn điều kiện đầu bài là đường trung trực của đoạn thẳng AC.

Bài 45 trang 93 SBT Toán 10 Tập 1Cho hai tam giác ABC và A’B’C’ có cùng trọng tâm là G. Chứng minh AA'+BB'+CC'=0.

Lời giải:

Ta có: 

AA'+BB'+CC'=AG+GA'+BG+GB'+CG+GC'

 

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

 

Bài 46 trang 93 SBT Toán 10 Tập 1: Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác, D là điểm đối xứng với H qua O. Chứng minh rằng: HA+HB+HC=HD.

Lời giải:

Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ - Cánh diều (ảnh 1)

Vẽ đường kính AE

Ta có: ACE^=90° nên AC  EC

Mà BH  EC

 BH // AC (1)

Ta lại có:ABE^=90° và AB  BE

Mà CH  AB

 BE // CH (2)

Từ (1) và (2) suy ra BHEC là hình bình hành

Xét tứ giác AHDE, có:

O là trung điểm của HD (gt)

O là trung điểm của AE

Do đó AHDE là hình bình hành

Khi đó, ta có:

HA+HB+HC=HA+HB+HC=HA+HE=HD

Xem thêm các bài giải sách bài tập Toán 10 Cánh diều hay, chi tiết khác:

Giải SBT Toán 10 trang 92 Tập 1

Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:

Đánh giá

0

0 đánh giá