Với lời giải SBT Toán 10 trang 92 Tập 1 chi tiết trong Bài 4: Tổng và hiệu của hai vectơ sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải SBT Toán lớp 10 Bài 4: Tổng và hiệu của hai vectơ
Bài 32 trang 92 SBT Toán 10 Tập 1: Cho ba điểm M, N, P phân biệt. Phát biểu nào sau đây là đúng?
Lời giải:
Đáp án đúng là C
Ta có: (H, K là điểm thỏa mãn MKHN là hình bình hành). Do đó A sai.
Ta có: (T là điểm MNPT là hình bình hành). Do đó B sai
Ta có: (quy tắc ba điểm). Do đó C đúng.
Ta có: . Do đó D sai.
Bài 33 trang 92 SBT Toán 10 Tập 1: Cho tứ giác ABCD là hình bình hành. Khẳng định nào sau đây đúng?
Lời giải:
Đáp án đúng là A
Ta có: . Do đó A đúng.
Ta có: . Do đó B sai.
Ta có: . Do đó C sai.
Ta có: . Do đó D sai.
Bài 34 trang 92 SBT Toán 10 Tập 1: Cho các điểm A, B, O. Khẳng định nào sau đây đúng?
Lời giải:
Đáp án đúng là B
Cho các điểm A, B, O. Khẳng định nào sau đây đúng?
Ta có: . Do đó A sai.
Ta có: . Do đó B đúng.
Ta có: (C là điểm thỏa mãn OBCA là hình bình hành). Do đó C sai.
Ta có: (C là điểm thỏa mãn OBCA là hình bình hành). Do đó D sai.
Bài 35 trang 92 SBT Toán 10 Tập 1: Cho ba điểm A, B, M phân biệt. Điều kiện cần và đủ để M là trung điểm của đoạn thẳng AB là:
A. .
B. .
C. ngược hướng.
D. .
Lời giải:
Đáp án đúng là D
M là trung điểm của đoạn thẳng AB thì MA = MB và ngược hướng.
⇒ hay
Vậy điều kiện đủ đề M là trung điểm của đoạn thẳng AB là
Bài 36 trang 92 SBT Toán 10 Tập 1: Cho tam giác ABC. Điều kiện cần và đủ để G là trọng tâm của tam giác ABC là:
Lời giải:
Đáp án đúng là B
Điều kiện cần và đủ để G là trọng tâm của tam giác ABC là
⇔
⇔
Bài 37 trang 92 SBT Toán 10 Tập 1: Cho tứ giác ABCD, O là trung điểm của AB. Chứng minh:
Lời giải:
Ta có:
Bài 38 trang 92 SBT Toán 10 Tập 1: Cho tam giác ABC vuông tại A, AB = 4a, AC = 5a. Tính:
a) ;
b) .
Lời giải:
a) Xét tam giác ABC vuông tại A, có:
BC2 = AB2 + AC2 (định lí pythagoras)
⇔ BC2 = (4a)2 + (5a)2 = 41a2
⇔ BC = a.
Ta có:
⇒ .
Vậy .
b) Lấy điểm D là điểm thỏa mãn ABDC là hình chữ nhật nên AD = BC (tính chất hình hình chữ nhật).
Ta có: (quy tắc hình bình hành)
⇒ .
Vậy
Bài 39 trang 92 SBT Toán 10 Tập 1: Cho tam giác đều ABC cạnh a. Tính:
Lời giải:
a) Ta có: (quy tắc 3 điểm)
⇒
Vậy .
b) Ta có:
⇒ .
Vậy .
c) Gọi D là điểm thỏa mãn ABDC là hình bình hành, M là trung điểm của BC.
Khi đó:
⇒ .
Xét tam giác ABC, có AM là đường trung tuyến nên AM là đường cao
⇒ AM =
⇒ AD = 2AM = 2..
⇒ .
Vậy .
Bài 40 trang 92 SBT Toán 10 Tập 1: Cho tam giác ABC thỏa mãn . Chứng minh tam giác ABC vuông tại A.
Lời giải:
Gọi D là điểm thỏa mãn ABDC là hình bình hành.
Khi đó, ta có:
⇒
Ta lại có:
⇒
Mà nên AD = CB.
Hình bình hành ABCD có AB = CB nên ABCD là hình chữ nhật. Do đó tam giác ABC vuông tại A.
Xem thêm các bài giải sách bài tập Toán 10 Cánh diều hay, chi tiết khác:
Giải SBT Toán 10 trang 93 Tập 1
Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:
Bài 4: Tổng và hiệu của hai vectơ
Bài 5: Tích của một số với một vectơ