Giải SBT Toán 10 trang 21 Tập 2 Chân trời sáng tạo

1.2 K

Với lời giải SBT Toán 10 trang 21 Tập 2 chi tiết trong Bài tập cuối chương 7 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài tập cuối chương 7

Bài 1 trang 21 SBT Toán 10 Tập 2: Dựa vào đồ thị của hàm số bậc hai y=fxsau đây, hãy xét dấu của tam thức bậc hai f(x).

a) Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

b) Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

c) Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

d) Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số nằm phía trên trục hoành khi x < 12 hoặc x > 3 hay f(x) > 0 khi x  ;12  (3; +).

Đồ thị hàm số nằm phía dưới trục hoành khi 12<x<3 hay f(x) < 0 khi x ∈ 12;3

Vậy f ( x ) dương trong hai khoảng ;12  (3; +), f(x) âm khi x  12;3.

b) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số nằm phía trên trục hoành khi  –3 < x < 5 hay f(x) > 0 khi x  (–3; 5)

Đồ thị hàm số nằm phía dưới trục hoành khi x < –3 hoặc x > 5 hay f(x) < 0 khi x  ;3  (5; +)

Vậy f ( x ) dương trong khoảng ( –3; 5 ), âm trong hai khoảng ;3 và 5;+.

c) Đồ thị hàm số nằm phía trên trục hoành khi x ≠ 3.

Vậy f ( x ) dương với mọi x ≠ 3.

d) Đồ thị hàm số nằm phía dưới trục hoành với mọi x  ℝ.

Vậy f ( x ) âm với mọi x  ℝ.

Bài 2 trang 21 SBT Toán 10 Tập 2: Xét dấu của các tam thức bậc hai sau:

Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

 

Lời giải:

a) Tam thức bậc hai fx=7x2+44x45 có  = 442 – 4.(– 7).(– 45) = 676 > 0 suy ra f(x) có hai nghiệm phân biệt x1 = 5 và x2 = 97, a = –7 < 0 nên f ( x ) dương trong khoảng 97;5, âm trong hai khoảng ;97 và 5;+.

b) Tam thức bậc hai fx=4x2+36x+81 có  = 362 – 4.4.81 = 0 suy ra f(x) có một nghiệm duy nhất x = -92 , a = 4 > 0 nên f ( x ) dương với mọi x ≠ 92.

c) Tam thức bậc hai fx=9x26x+3 có ∆ = ( –6 )2 – 4.9.3 = –72 < 0 và a = 9 > 0 nên f ( x ) dương với mọi x  ℝ.

d) Tam thức bậc hai fx=9x2+30x25 có  = 302 – 4.( –9).( –25) = 0 suy ra f(x) có một nghiệm duy nhất x = 53 , a = –9 < 0 nên f ( x ) âm với mọi x ≠ 53.

e) Tam thức bậc hai fx=x24x+3 có  = (–4)2 – 4.1.3 = 4 suy ra f(x) có hai nghiệm phân biệt x1 = 3 và x2 =1, a = 1 > 0 nên

f ( x ) âm trong khoảng 1;3f(x) dương trong hai khoảng ;1 và 3;+.

g) Tam thức bậc hai fx=4x2+8x7 có ∆ = 82 – 4.( –4).( –7) = –48 < 0 ,

a = –4 < 0 nên f ( x ) âm với mọi x  ℝ.

Bài 3 trang 21 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:

Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

 

Lời giải:

a) x210x+240;

Tam thức bậc hai f ( x ) = x2 – 10x + 24 có  = (– 10)2 – 4.1.24 = 4 > 0 suy ra f(x) có hai nghiệm phân biệt x1 = 6 và x2 = 4 và a = 1 > 0 nên f ( x ) > 0 với x ≤ 4 hoặc x ≥ 6.

Vậy bất phương trình đã cho có tập nghiệm S = (– ; 4]  [6; +∞)

b) 4x2+28x490;

Tam thức bậc hai f ( x ) = –4x2 + 28x – 49 có  = 282 – 4.(– 4).(– 49) = 0 suy ra f(x) có một nghiệm x = 72 , a = –4 < 0 nên f ( x ) ≤  0 với mọi x  ℝ.

Vậy bất phương trình đã cho có tập nghiệm S = ℝ.

c) x25x+1>0;

Tam thức bậc hai f ( x ) = x2 – 5x + 1 có  = (–5)2 – 4.1.1 = 21 suy ra f(x) có hai nghiệm phân biệt x1 = 5+212 và x2 = 5-212, a = 1 > 0 nên f ( x ) > 0 với x < 5212 hoặc x > 5+212.

Vậy bất phương trình đã cho có tập nghiệm S = ;52125+212;+

d) 9x224x+160;

Tam thức bậc hai f ( x ) = 9x2 – 24x +16 có  = (–24)2 – 4.9.16 = 0 suy ra f(x) có một nghiệm x = 43 , a = 9 > 0 nên f ( x ) ≤  0 khi x = 43.

Vậy bất phương trình đã cho có tập nghiệm S = 43

e) 15x2x2<0;

Tam thức bậc hai f ( x ) = 15x2 – x – 2 có  = (–1)2 – 4.15.( –2) = 121 suy ra f(x) có hai nghiệm phân biệt x1 = 25 và x2 = -13, a = 15 > 0 nên f ( x ) < 0 với 13 < x < 25.

Vậy bất phương trình đã cho có tập nghiệm S = 13;25

g) x2+8x17>0;

Tam thức bậc hai f ( x ) = –x2 + 8x – 17 có ∆ = 82 – 4.( –1).( –17) = –4 < 0 , a = –1 < 0 nên f ( x ) âm với mọi x  ℝ.

Vậy bất phương trình vô nghiệm.

h) 25x2+10x1<0;

Tam thức bậc hai f ( x ) = –25x2 + 10x – 1 có  = 102 – 4.( –25).( –1) = 0  suy ra f(x) có một nghiệm x = 15 , a = –25 < 0 nên f ( x ) < 0 khi x ≠ 15.

Vậy bất phương trình đã cho có tập nghiệm S = ℝ \ 15.

i) 4x2+4x+70.

Tam thức bậc hai f ( x ) = 4x2 + 4x + 7 có ∆ = 42 – 4.4.7 = –96 < 0 , a = 4 > 0 nên f ( x ) dương với mọi x  ℝ.

Vậy bất phương trình vô nghiệm.

Xem thêm các bài giải sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Giải SBT Toán 10 trang 19 Tập 2

Giải SBT Toán 10 trang 20 Tập 2

Giải SBT Toán 10 trang 22 Tập 2

Giải SBT Toán 10 trang 23 Tập 2

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 7

Bài 1: Quy tắc cộng và quy tắc nhân

Bài 2: Hoán vị, chỉnh hợp và tổ hợp

Bài 3: Nhị thức Newton

Đánh giá

0

0 đánh giá