Với lời giải SBT Toán 10 trang 20 Tập 2 chi tiết trong Bài tập cuối chương 7 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải SBT Toán lớp 10 Bài tập cuối chương 7
Câu 5 trang 20 SBT Toán 10 Tập 2: Cho đồ thị của hàm số bậc hai y = f(x) như Hình 1.
Tập nghiệm của bất phương trình là:
A. ;
B. ;
C. ;
D. .
Lời giải:
Đáp án đúng là D
Tập nghiệm của bất phương trình là .
Câu 6 trang 20 SBT Toán 10 Tập 2: Bất phương trình nào có tập nghiệm là (2; 5)?
Lời giải:
Đáp án đúng là B
+) Tam thức bậc hai f ( x ) = x2 – 7x +10 có ∆ = ( – 7)2 – 4.1.10 = 9 > 0 nên f(x) có hai nghiệm phân biệt x1 = 2 và x2 = 5, và a = 1 > 0 nên ta có:
f ( x ) > 0 với x < 2 hoặc x > 5.
f ( x ) < 0 với 2 < x < 5.
Do đó A sai, B đúng.
+) Tam thức bậc hai f ( x ) = có ∆ = 132 – 4.1.(– 30) = 289 > 0 nên f(x) hai nghiệm phân biệt x1 = 2 và x2 = –15, và a = 1 > 0 nên ta có:
f ( x ) > 0 với x < –15 hoặc x > 2.
f ( x ) < 0 với –15 < x < 2.
Do đó C, D sai.
Vậy đáp án đúng là B.
Câu 7 trang 20 SBT Toán 10 Tập 2: Tập xác định của hàm số là:
Lời giải:
Đáp án đúng là B
Hàm số trên xác định khi và chỉ khi 3 – x ≥ 0 và 9x2 – 3x – 2 > 0
+) Ta có 3 – x ≥ 0 khi và chỉ khi x ≤ 3 (1)
+) Xét tam thức bậc hai f ( x ) = 9x2 – 3x – 2 có ∆ = (– 3)2 – 4.9.(– 2) = 81 > 0 nên f(x) có hai nghiệm phân biệt x1 = và x2 = , và a = 9 > 0 nên f ( x ) > 0 với (2)
Từ (1) và (2) suy ra tập xác định của hàm số trên là .
Vậy đáp án đúng là B.
Câu 8 trang 20 SBT Toán 10 Tập 2: Với giá trị nào của tham số m thì phương trình có hai nghiệm phân biệt?
A. hoặc m > 3;
B.
C. m < - 3 hoặc hoặc m > 3;
D. hoặc m > 3.
Lời giải:
Đáp án đúng là A
+) 2m + 6 = 0 ⇔ m = –3, khi đó phương trình trở thành –12x + 3 = 0 ⇒ x = . Suy ra phương trình chỉ có một nghiệm duy nhất. Do đó không thỏa mãn.
+) 2m + 6 ≠ 0 ⇔ m ≠ –3
Khi đó phương trình có hai nghiệm phân biệt khi và chỉ khi
∆ = (4m)2 – 4.3.(2m + 6) > 0 hay 2m2 – 3m – 9 > 0
Tam thức bậc hai f ( x ) = 2m2 – 3m – 9 có hai nghiệm phân biệt x1 = 3 và x2 = ,
a = 2 > 0 nên f ( x ) > 0 với x < hoặc x > 3 (2)
Từ điều kiện (1) và (2) suy ra m < - 3 hoặc hoặc m > 3.
Vậy đáp án đúng là C.
Câu 9 trang 20 SBT Toán 10 Tập 2: Giá trị nào là nghiệm của phương trình
A. x = – 5
B.
C. Cả hai câu A, B đều đúng;
D. Cả hai câu A, B đều sai.
Lời giải:
Đáp án đúng là C
Bình phương hai vế của phương trình đã cho, ta được:
x2 + x + 11 = –2x2 – 13x + 16
⇒ 3x2 + 14x – 5 = 0
⇒ x = hoặc x = –5.
Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy x = hoặc x = –5 đều thỏa mãn.
Vì vậy phương trình đã cho có hai nghiệm x = và x = –5
Vậy đáp án đúng là C.
Câu 10 trang 20 SBT Toán 10 Tập 2: Khẳng định nào đúng với phương trình
A. Phương trình có hai nghiệm phân biệt cùng dấu;
B. Phương trình có hai nghiệm phân biệt trái dấu;
C. Phương trình có một nghiệm;
D. Phương trinh vô nghiệm.
Lời giải:
Đáp án đúng là B
Bình phương hai vế của phương trình đã cho, ta được:
2x2 – 3x – 1 = 3x2 – 2x – 13
⇒ x2 + x – 12 = 0
⇒ x = 3 hoặc x = –4.
Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy x = 3 hoặc x = –4 đều thỏa mãn.
Suy ra phương trình đã cho có hai nghiệm x = 3 và x = –4. Vậy hai nghiệm của phương trình đã cho là hai nghiệm phân biệt trái dấu.
Đáp án đúng là B.
Câu 11 trang 20 SBT Toán 10 Tập 2: Khẳng định nào đúng với phương trình
A. Phương trình có một nghiệm;
B. Phương trình vô nghiệm;
C. Tổng các nghiệm của phương trình là -7;
D. Các nghiệm của phương trình đều không bé hơn .
Lời giải:
Đáp án đúng là A
Bình phương hai vế của phương trình đã cho, ta được:
5x2 + 27x + 36 = 4x2 + 20x + 25
⇒ x2 + 7x + 11 = 0
⇒ x = hoặc x = .
Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy chỉ có x = thỏa mãn.
Vì vậy đáp án A đúng.
Câu 12 trang 20 SBT Toán 10 Tập 2: Cho đồ thị của hai hàm số bậc hai f(x) = ax2 + bx + c và g(x) = dx2 + ex + h như Hình 2.
Khẳng định nào đúng với phương trình
A. Phương trình có hai nghiệm phân biệt là x = 1 và x = 6,
B. Phương trình có 1 nghiệm là x = l;
C. Phương trình có 1 nghiệm là x = 6;
D. Phương trình vô nghiệm.
Lời giải:
Đáp án đúng là B
Xét phương trình
Bình phương hai vế ta được f ( x ) = g ( x )
Đồ thị hàm số f ( x ) và g ( x ) giao nhau tại hai điểm x = 1 và x = 6. Tuy nhiên tại
x = 6 thì g ( x ) < 0 và f ( x ) < 0 nên không thỏa mãn.
Vậy phương trình có 1 nghiệm là x = 1.
Xem thêm các bài giải sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Giải SBT Toán 10 trang 19 Tập 2
Giải SBT Toán 10 trang 21 Tập 2
Giải SBT Toán 10 trang 22 Tập 2
Giải SBT Toán 10 trang 23 Tập 2
Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Phương trình quy về phương trình bậc hai
Bài 1: Quy tắc cộng và quy tắc nhân
Bài 2: Hoán vị, chỉnh hợp và tổ hợp