Với giải Bài 56 trang 63 SBT Toán lớp 10 Cánh diều chi tiết trong Bài ôn tập chương 3 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài ôn tập chương 3
Bài 56 trang 63 SBT Toán 10 Tập 1: Hai địa điểm A và B cách nhau bởi một con sông (coi hai bờ sông song song). Người ta muốn xây một chiếc cầu bắc vuông góc với bờ sông để có thể đi từ A đến B. Với các số liệu (tính theo đơn vị ki – lô – mét) cho trên Hình 28, tìm x(km) để xác định vị trí đặt chân cầu sao cho khoảng cách từ B đến chân cầu phía B gấp đôi khoảng cách từ A đến chân cầu phía A.
Lời giải
Đặt tọa độ các điểm như hình vẽ:
Ta có AD = x nên x > 0
Xét tam giác BHC vuông tại H, có:
BC2 = BH2 + CH2 (định lí py – ta – go)
BC2 = 42 + (6 – x)2
BC2 = 16 + 36 – 12x + x2
BC2 = x2 – 12x + 52
BC =
Xét tam giác AKD vuông tại K, có:
AD2 = AK2 + KD2 (định lí py – ta – go)
AD2 = 22 + x2
AD2 = x2 + 4
AD =
Để vị trí đặt chân cầu sao cho khoảng cách từ B đến chân cầu phía B gấp đôi khoảng cách từ A đến chân cầu phía A ta có BC = 2AD
Hay
Điều kiện x2 + 4 ≥ 0 luôn đúng với mọi x.
⇔ x2 – 12x + 52 = 4(x2 + 4)
⇔ x2 – 12x + 52 = 4x2 + 16
⇔ 3x2 + 12x – 36 = 0
⇔ x = 2 (thỏa mãn) hoặc x = – 6 (không thỏa mãn)
Vậy x = 2 thỏa mãn yêu cầu bài toán.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 45 trang 61 SBT Toán 10 Tập 1: Trong các hàm số sau, hàm số nào không là hàm số bậc hai?...
Bài 46 trang 61 SBT Toán 10 Tập 1: Tập nghiệm của bất phương trình – 5x2 + 6x + 11 ≤ 0 là:...
Bài 47 trang 62 SBT Toán 10 Tập 1: Cho hàm số f(x) = ...
Bài 48 trang 62 SBT Toán 10 Tập 1: Cho hàm số y = f(x) có đồ thị ở Hình 24...
Bài 50 trang 62 SBT Toán 10 Tập 1: Vẽ đồ thị của mỗi hàm số sau:...
Bài 51 trang 62 SBT Toán 10 Tập 1: Giải các bất phương trình bậc hai sau:...
Bài 52 trang 62 SBT Toán 10 Tập 1: Giải các phương trình sau:...
Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:
Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Bài 1: Định lí côsin và định lí sin trong tam giác. Giá trị lượng giác của một góc từ 0° đến 180°
Bài 2: Giải tam giác. Tính diện tích tam giác