Với giải Bài 43 trang 61 SBT Toán lớp 10 Cánh diều chi tiết trong Bài 5: Hai dạng phương trình quy về phương trình bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Bài 43 trang 61 SBT Toán 10 Tập 1: Một người đi bộ xuất phát từ B trên một bờ sông (coi là đường thẳng) với vận tốc 6km/h để gặp một người chèo thuyền xuất phát cùng lúc từ vị trí A với vận tốc 3km/h. Nếu người chèo thuyền di chuyển theo đường vuông góc với bờ thì phải đi một khoảng cách AH = 300m và gặp người đi bộ tại địa điểm cách B một khoảng BH = 1 400m. Tuy nhiên, nếu di chuyển theo cách đó thì hai người không tới cùng lúc. Để hai người đến cùng lúc thì mỗi người cùng di chuyển về vị trí C (Hình 22).
a) Tính khoảng cách CB.
b) Tính thời gian từ khi hai người xuất phát cho đến khi gặp nhau cùng lúc.
Lời giải
a) Đặt CH = x (x ≥ 0). Khi đó BC = 1 400 – x.
Xét tam giác AHC vuông tại H, có:
AH2 + HC2 = AC2
⇔ AC2 = 3002 + x2
⇔ AC =
Thời gian thuyền đi từ A đến C là: (giờ)
Thời gian người đi bộ đi từ B đến C là (giờ)
Để hai người đến cùng lúc thì mỗi người cùng di chuyển về vị trí C nên ta có:
⇔ (điều kiện x ≤ 1 400)
⇔ 4(x2 + 90 000) = 1 960 000 – 2 800x + x2
⇔ 3x2 + 2 800x – 1 600 000 = 0
⇔ x = 400 (TMĐK) hoặc x = (không TMĐK)
⇒ CB = 1 400 – x = 1 400 – 400 = 1 000 (m).
Vậy khoảng cách CB = 1 000 m.
b) Đổi 1 000 m = 1km.
Thời gian hai nguời xuất phát cho tới khi gặp nhau là: (giờ)
Vậy từ khi xuất phát hai người mất giờ cho đến khi gặp nhau.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 36 trang 59 SBT Toán 10 Tập 1: Trong các phát biểu sau, phát biểu nào đúng?...
Bài 37 trang 60 SBT Toán 10 Tập 1: Trong các phát biểu sau, phát biểu nào đúng?...
Bài 40 trang 60 SBT Toán 10 Tập 1: Giải các phương trình sau:...
Bài 41 trang 60 SBT Toán 10 Tập 1: Giải các phương trình sau:...
Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:
Bài 4: Bất phương trình bậc nhất một ẩn
Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Bài 1: Định lí côsin và định lí sin trong tam giác. Giá trị lượng giác của một góc từ 0° đến 180°
Bài 2: Giải tam giác. Tính diện tích tam giác