Với giải ý c Bài 29 trang 32 SBT Toán lớp 10 Cánh diều chi tiết trong Bài ôn tập chương 2 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài ôn tập chương 2
Bài 29 trang 32 SBT Toán 10 Tập 1: Một xưởng sản xuất bàn và ghế. Một chiếc bàn cần 1,5 giờ lắp ráp và 1 giờ để hoàn thiện; một chiếc ghế cần 1 giờ để lắp ráp và 2 giờ để hoàn thiện. Bộ phận lắp ráp có 3 nhân công, bộ phận hoàn thiện có 4 nhân công. Biết thị trường luôn tiêu thụ hết sản phẩm của xưởng và lượng ghế tiêu thụ không vượt quá 3,5 lần số bàn.
c) Biết một chiếc bàn lãi 600 nghìn đồng, một chiếc ghế lãi 450 nghìn đồng. Hỏi trong một ngày, xưởng cần sản xuất bao nhiêu chiếc bàn, bao nhiêu chiếc ghế để thu được tiền lãi cao nhất.
Lời giải:
c) Số tiền lãi mà phân xưởng thu được khi bán x chiếc bàn và y chiếc ghế là: 600x + 450y (nghìn đồng).
Đặt T = 600x + 450y.
Biểu thức T = 600x + 450y đạt giá trị lớn nhất tại các đỉnh của tứ giác OABC.
Tính giá trị biểu thức T tại các đỉnh ta được:
Tại O(0; 0) với x = 0, y = 0 thì T = 600.0 + 450.0 = 0;
Tại A(4; 14) với x = 4, y = 14 thì T = 600.4 + 450.14 = 8 700;
Tại B(8; 12) với x = 8, y = 12 thì T = 600.8 + 450.12 = 10 200;
Tại C(16; 0) với x = 16, y = 0 thì T = 600.16 + 450.0 = 9 600.
Suy ra T đạt giá trị lớn nhất bằng 10 200 khi x = 8 và y = 12.
Vậy xưởng cần sản xuất 8 chiếc bàn và 12 chiếc ghế để thu được tiền lãi lớn nhất là 10 200 000 đồng.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 21 trang 31 SBT Toán 10 Tập 1: Cặp số nào sau đây không là nghiệm của hệ bất phương trình ...
Bài 25 trang 32 SBT Toán 10 Tập 1: Biểu diễn miền nghiệm của các bất phương trình sau:...
Bài 26 trang 32 SBT Toán 10 Tập 1: Biểu diễn miền nghiệm của các hệ bất phương trình sau:...
Bài 27 trang 32 SBT Toán 10 Tập 1: a) Biểu diễn miền nghiệm của hệ bất phương trình (I)...
Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:
Bài 2: Hệ bất phương trình bậc nhất hai ẩn
Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Bài 3: Dấu của tam thức bậc hai